Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Med ; 53(9): 1446-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872744

RESUMO

UNLABELLED: A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required. METHODS: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either (11)C or (68)Ga, followed by biodistribution studies with small-animal PET. Dosimetry data for the 2 radiotracers were compared. Imaging of HER2-expressing human tumor xenografts was performed using the (11)C-labeled Affibody molecule. RESULTS: Both the (11)C- and (68)Ga-labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4-5 percentage injected dose per gram of tissue at 1 h. Final retention in the kidneys was much lower (>5-fold) for the (11)C-labeled protein, and its overall absorbed dose was considerably lower. (11)C-Z(HER2:342) showed excellent tumor-targeting capability, with almost 10 percentage injected dose per gram of tissue in HER2-expressing tumors within 1 h. Specificity was demonstrated by preblocking binding sites with excess ligand, yielding significantly reduced radiotracer uptake (P = 0.002), comparable to uptake in tumors with low HER2 expression. CONCLUSION: To our knowledge, the Sel-tagging technique is the first that enables site-specific (11)C-radiolabeling of proteins. Here we present the finding that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, (11)C-labeled Sel-tagged Z(HER2:342) can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/química , Selenocisteína , Animais , Radioisótopos de Carbono , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Radioisótopos de Gálio , Regulação Neoplásica da Expressão Gênica , Humanos , Marcação por Isótopo , Camundongos , Modelos Moleculares , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 109(8): 2754-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21697511

RESUMO

Cyclin-dependent kinase subunit (Cks) proteins are small cyclin-dependent kinase-interacting proteins that are frequently overexpressed in breast cancer, as well as in a broad spectrum of other human malignancies. However, the mechanistic link between Cks protein overexpression and oncogenesis is still unknown. In this work, we show that overexpression of Cks1 or Cks2 in human mammary epithelial and breast cancer-derived cells, as well as in other cell types, leads to override of the intra-S-phase checkpoint that blocks DNA replication in response to replication stress. Specifically, binding of Cks1 or Cks2 to cyclin-dependent kinase 2 confers partial resistance to the effects of inhibitory tyrosine phosphorylation mediated by the intra-S-phase checkpoint, allowing cells to continue replicating DNA even under conditions of replicative stress. Because many activated oncoproteins trigger a DNA damage checkpoint response, which serves as a barrier to proliferation and clonal expansion, Cks protein overexpression likely constitutes one mechanism whereby premalignant cells can circumvent this DNA damage response barrier, conferring a proliferative advantage under stress conditions, and therefore contributing to tumor development.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Proteínas Oncogênicas/metabolismo , Proteínas Quinases/metabolismo , Animais , Quinases relacionadas a CDC2 e CDC28 , Linhagem Celular Tumoral , Células HEK293 , Humanos , Hidroxiureia/farmacologia , Camundongos , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Timidina/farmacologia
3.
Mol Cell Biol ; 28(18): 5698-709, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18625720

RESUMO

Cks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles. RNA interference (RNAi)-mediated silencing of CKS genes in mouse embryonic fibroblasts (MEFs) or HeLa cells causes cessation of proliferation. In MEFs CKS silencing leads to cell cycle arrest in G(2), followed by rereplication and polyploidy. This phenotype can be attributed to impaired transcription of the CCNB1, CCNA2, and CDK1 genes, encoding cyclin B1, cyclin A, and Cdk1, respectively. Restoration of cyclin B1 expression rescues the cell cycle arrest phenotype conferred by RNAi-mediated Cks protein depletion. Consistent with a direct role in transcription, Cks2 is recruited to chromatin in general and to the promoter regions and open reading frames of genes requiring Cks function with a cell cycle periodicity that correlates with their transcription.


Assuntos
Quinases relacionadas a CDC2 e CDC28/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Quinases/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Quinases relacionadas a CDC2 e CDC28/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Ciclina A/genética , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Quinases Ciclina-Dependentes/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Knockout , Fases de Leitura Aberta , Fenótipo , Ploidias , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA