Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 25(10): 105126, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185386

RESUMO

Myrmecomorphy is the most frequent type of Batesian mimicry. Myrmecomorphic species differ in the accuracy with which they resemble ants; however, the hypothesis of the co-evolution of mimetic traits has been rarely tested. Here, we measured dozens of traits of color, shape, size, and behavior, and quantified objectively the resemblance between dozens of arthropod mimics and ants. In all traits, the mimics were more similar to ants than to closely related non-myrmecomorphic species. We found that mimics resemble ants mainly in color and behavior, and less in size and body shape. We found that the mimetic accuracy in four trait categories demonstrate divergent co-evolutionary patterns. Mimetic accuracy in color was positively correlated with shape and size in insects but negatively in spiders, presumably reflecting developmental constraints. Accuracy in shape tend to be negatively related to movement in both insects and spiders supporting the motion-limited discrimination hypothesis.

2.
PLoS One ; 6(1): e14603, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298048

RESUMO

BACKGROUND: Divergence in trophic niche between the sexes may function to reduce competition between the sexes ("intersexual niche partitioning hypothesis"), or may be result from differential selection among the sexes on maximizing reproductive output ("sexual selection hypothesis"). The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning. METHODOLOGY/PRINCIPAL FINDINGS: Comparative analysis of trophic morphology (the chelicerae) and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism) in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles. CONCLUSIONS/SIGNIFICANCE: Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex-differences in the route to successful reproduction where females are selected to maximize energy intake and fecundity, while males switch from foraging to invest in mating effort.


Assuntos
Caracteres Sexuais , Aranhas/fisiologia , Animais , Formigas , Pesos e Medidas Corporais , Ingestão de Energia , Feminino , Fertilidade , Masculino , Aranhas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA