Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur Urol Oncol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851995

RESUMO

BACKGROUND AND OBJECTIVE: While collagen density has been associated with poor outcomes in various cancers, its role in prostate cancer (PCa) remains elusive. Our aim was to analyze collagen-related transcriptomic, proteomic, and urinome alterations in the context of detection of clinically significant PCa (csPCa, International Society of Urological Pathology [ISUP] grade group ≥2). METHODS: Comprehensive analyses for PCa transcriptome (n = 1393), proteome (n = 104), and urinome (n = 923) data sets focused on 55 collagen-related genes. Investigation of the cellular source of collagen-related transcripts via single-cell RNA sequencing was conducted. Statistical evaluations, clustering, and machine learning models were used for data analysis to identify csPCa signatures. KEY FINDINGS AND LIMITATIONS: Differential expression of 30 of 55 collagen-related genes and 34 proteins was confirmed in csPCa in comparison to benign prostate tissue or ISUP 1 cancer. A collagen-high cancer cluster exhibited distinct cellular and molecular characteristics, including fibroblast and endothelial cell infiltration, intense extracellular matrix turnover, and enhanced growth factor and inflammatory signaling. Robust collagen-based machine learning models were established to identify csPCa. The models outcompeted prostate-specific antigen (PSA) and age, showing comparable performance to multiparametric magnetic resonance imaging (mpMRI) in predicting csPCa. Of note, the urinome-based collagen model identified four of five csPCa cases among patients with Prostate Imaging-Reporting and Data System (PI-IRADS) 3 lesions, for which the presence of csPCa is considered equivocal. The retrospective character of the study is a limitation. CONCLUSIONS AND CLINICAL IMPLICATIONS: Collagen-related transcriptome, proteome, and urinome signatures exhibited superior accuracy in detecting csPCa in comparison to PSA and age. The collagen signatures, especially in cases of ambiguous lesions on mpMRI, successfully identified csPCa and could potentially reduce unnecessary biopsies. The urinome-based collagen signature represents a promising liquid biopsy tool that requires prospective evaluation to improve the potential of this collagen-based approach to enhance diagnostic precision in PCa for risk stratification and guiding personalized interventions. PATIENT SUMMARY: In our study, collagen-related alterations in tissue, and urine were able to predict the presence of clinically significant prostate cancer at primary diagnosis.

2.
Heliyon ; 10(7): e28358, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689972

RESUMO

The development of single-cell omics tools has enabled scientists to study the tumor microenvironment (TME) in unprecedented detail. However, each of the different techniques may have its unique strengths and limitations. Here we directly compared two commercially available high-throughput single-cell RNA sequencing (scRNA-seq) technologies - droplet-based 10X Chromium vs. microwell-based BD Rhapsody - using paired samples from patients with localized prostate cancer (PCa) undergoing a radical prostatectomy. Although high technical consistency was observed in unraveling the whole transcriptome, the relative abundance of cell populations differed. Cells with low mRNA content such as T cells were underrepresented in the droplet-based system, at least partly due to lower RNA capture rates. In contrast, microwell-based scRNA-seq recovered less cells of epithelial origin. Moreover, we discovered platform-dependent variabilities in mRNA quantification and cell-type marker annotation. Overall, our study provides important information for selection of the appropriate scRNA-seq platform and for the interpretation of published results.

3.
Trends Cancer ; 10(5): 457-474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360439

RESUMO

Neutrophils represent the most abundant myeloid cell subtype in the non-small-cell lung cancer (NSCLC) tumor microenvironment (TME). By anti- or protumor polarization, they impact multiple aspects of tumor biology and affect sensitivity to conventional therapies and immunotherapies. Single-cell RNA sequencing (scRNA-seq) analyses have unraveled an extensive neutrophil heterogeneity, helping our understanding of their pleiotropic role. In this review we summarize recent data and models on tumor-associated neutrophil (TAN) biology, focusing on the diversity that evolves in response to tumor-intrinsic cues. We categorize available transcriptomic profiles from different cancer entities into a defined set of neutrophil subclusters with distinct phenotypic properties, to step beyond the traditional binary N1/2 classification. Finally, we discuss potential ways to exploit these neutrophil states in the setting of anticancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neutrófilos , Microambiente Tumoral , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Imunoterapia/métodos , Análise de Célula Única/métodos , Animais , Transcriptoma
4.
Front Immunol ; 14: 1095195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006314

RESUMO

Renal cell carcinoma (RCC) is frequently infiltrated by immune cells, a process which is governed by chemokines. CD8+ T cells in the RCC tumor microenvironment (TME) may be exhausted which most likely influence therapy response and survival. The aim of this study was to evaluate chemokine-driven T cell recruitment, T cell exhaustion in the RCC TME, as well as metabolic processes leading to their functional anergy in RCC. Eight publicly available bulk RCC transcriptome collectives (n=1819) and a single cell RNAseq dataset (n=12) were analyzed. Immunodeconvolution, semi-supervised clustering, gene set variation analysis and Monte Carlo-based modeling of metabolic reaction activity were employed. Among 28 chemokine genes available, CXCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1 mRNA expression were significantly increased in RCC compared to normal kidney tissue and also strongly associated with tumor-infiltrating effector memory and central memory CD8+ T cells in all investigated collectives. M1 TAMs, T cells, NK cells as well as tumor cells were identified as the major sources of these chemokines, whereas T cells, B cells and dendritic cells were found to predominantly express the cognate receptors. The cluster of RCCs characterized by high chemokine expression and high CD8+ T cell infiltration displayed a strong activation of IFN/JAK/STAT signaling with elevated expression of multiple T cell exhaustion-associated transcripts. Chemokinehigh RCCs were characterized by metabolic reprogramming, in particular by downregulated OXPHOS and increased IDO1-mediated tryptophan degradation. None of the investigated chemokine genes was significantly associated with survival or response to immunotherapy. We propose a chemokine network that mediates CD8+ T cell recruitment and identify T cell exhaustion, altered energy metabolism and high IDO1 activity as key mechanisms of their suppression. Concomitant targeting of exhaustion pathways and metabolism may pose an effective approach to RCC therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Linfócitos T CD8-Positivos , Exaustão das Células T , Quimiocinas/genética , Quimiocina CXCL9/genética , Microambiente Tumoral
5.
Cancers (Basel) ; 15(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36831346

RESUMO

BACKGROUND: Surgery is the standard treatment in localized renal cell carcinoma (RCC). Pembrolizumab is now approved for adjuvant therapy in high-risk patients. However, inhomogeneity of studies gives ambiguity which patient benefit most from adjuvant therapy. A high infiltration of CD8+ T cells is known to be linked with poor prognosis in RCC. CXCR3 is a key player of CD8+ T cell differentiation and infiltration. We aimed to evaluate CXCR3 as a potential marker for predicting recurrence. METHODS: CXCR3 and immune cell subsets (CD4, CD8, CD68 and FoXP3) were measured on RCC samples by multiplex immunofluorescence (mIF) staining. Cellular localization of CXCR3 was evaluated using single-cell RNA analysis on a publicly available dataset. RESULTS: Tumor samples of 42 RCC patients were analyzed, from which 59.5% were classified as clear-cell RCC and of which 20 had recurrence. Single-cell RNA analysis revealed that CXCR3 was predominantly expressed in intratumoral T cells and dendritic cells. CXCR3 expression was higher in advanced tumors stages (p = 0.0044) and grade (p = 0.0518), correlating significantly with a higher CD8+ T cell expression (p < 0.001). Patients with CXCR3high RCCs had also a significant shorter RFS compared to CXCR3low (median: 78 vs. 147 months, p = 0.0213). In addition, also tumor stage pT3/4 (p < 0.0001) as well as grade G3/4 (p = 0.0008) negatively influenced RFS. CONCLUSION: CXCR3high cell density was associated with high T cell infiltration and advanced tumor stage, worsening RFS in surgically resected RCC patients. Beside its prognostic value, CXCR3 might be a predictive biomarker to guide therapy decision for adjuvant therapy in localized RCC.

6.
Cancer Cell ; 40(12): 1503-1520.e8, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368318

RESUMO

Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples and 318 patients across 29 datasets, including our dataset capturing cells with low mRNA content. We stratify patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identify cellular components associated with tumor histology and genotypes. We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death ligand 1 (PD-L1) treatment failure.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neutrófilos/metabolismo , Microambiente Tumoral , Antígeno B7-H1/metabolismo
7.
Clin Cancer Res ; 28(22): 4957-4967, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36112544

RESUMO

PURPOSE: Chemokines are essential for immune cell trafficking and are considered to have a major impact on the composition of the tumor microenvironment. CX-chemokine receptor 4 (CXCR4) is associated with poor differentiation, metastasis, and prognosis in pancreatic ductal adenocarcinoma (PDAC). This study provides a comprehensive molecular portrait of PDAC according to CXCR4 mRNA expression levels. EXPERIMENTAL DESIGN: The Cancer Genome Atlas database was used to explore molecular and immunologic features associated with CXCR4 mRNA expression in PDAC. A large real-word dataset (n = 3,647) served for validation and further exploratory analyses. Single-cell RNA analyses on a publicly available dataset and in-house multiplex immunofluorescence (mIF) experiments were performed to elaborate cellular localization of CXCR4. RESULTS: High CXCR4 mRNA expression (CXCR4high) was associated with increased infiltration of regulatory T cells, CD8+ T cells, and macrophages, and upregulation of several immune-related genes, including immune checkpoint transcripts (e.g., TIGIT, CD274, PDCD1). Analysis of the validation cohort confirmed the CXCR4-dependent immunologic TME composition in PDAC irrespective of microsatellite instability-high/mismatch repair-deficient or tumor mutational burden. Single-cell RNA analysis and mIF revealed that CXCR4 was mainly expressed by macrophages and T-cell subsets. Clinical relevance of our finding is supported by an improved survival of CXCR4high PDAC. CONCLUSIONS: High intratumoral CXCR4 mRNA expression is linked to a T cell- and macrophage-rich PDAC phenotype with high expression of inhibitory immune checkpoints. Thus, our findings might serve as a rationale to investigate CXCR4 as a predictive biomarker in patients with PDAC undergoing immune checkpoint inhibition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Receptores de Quimiocinas , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética , RNA Mensageiro/genética , RNA , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Neoplasias Pancreáticas
8.
Arterioscler Thromb Vasc Biol ; 39(11): 2273-2288, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31533473

RESUMO

OBJECTIVE: Activation of endothelial ß-catenin signaling by neural cell-derived Norrin or Wnt ligands is vital for the vascularization of the retina and brain. Mutations in members of the Norrin/ß-catenin pathway contribute to inherited blinding disorders because of defective vascular development and dysfunctional blood-retina barrier. Despite a vital role for endothelial ß-catenin signaling in central nervous system health and disease, its contribution to central nervous system angiogenesis and its interactions with downstream signaling cascades remains incompletely understood. Approach and Results: Here, using genetically modified mouse models, we show that impaired endothelial ß-catenin signaling caused hypovascularization of the postnatal retina and brain because of deficient endothelial cell proliferation and sprouting. Mosaic genetic analysis demonstrated that endothelial ß-catenin promotes but is not required for tip cell formation. In addition, pharmacological treatment revealed that angiogenesis under conditions of inhibited Notch signaling depends upon endothelial ß-catenin. Importantly, impaired endothelial ß-catenin signaling abrogated the expression of the VEGFR (vascular endothelial growth factor receptor)-2 and VEGFR3 in brain microvessels but not in the lung endothelium. CONCLUSIONS: Our study identifies molecular crosstalk between the Wnt/ß-catenin and the Notch and VEGF-A signaling pathways and strongly suggest that endothelial ß-catenin signaling supports central nervous system angiogenesis by promoting endothelial cell sprouting, tip cell formation, and VEGF-A/VEGFR2 signaling.


Assuntos
Encéfalo/irrigação sanguínea , Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Retina/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Proteína Axina/metabolismo , Barreira Hematoencefálica/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Camundongos Transgênicos , Microcirculação , Receptor Cross-Talk , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
9.
Arterioscler Thromb Vasc Biol ; 39(7): 1432-1447, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242033

RESUMO

Objective- The Wnt/ß-catenin pathway orchestrates development of the blood-brain barrier, but the downstream mechanisms involved at different developmental windows and in different central nervous system (CNS) tissues have remained elusive. Approach and Results- Here, we create a new mouse model allowing spatiotemporal investigations of Wnt/ß-catenin signaling by induced overexpression of Axin1, an inhibitor of ß-catenin signaling, specifically in endothelial cells ( Axin1 iEC- OE). AOE (Axin1 overexpression) in Axin1 iEC- OE mice at stages following the initial vascular invasion of the CNS did not impair angiogenesis but led to premature vascular regression followed by progressive dilation and inhibition of vascular maturation resulting in forebrain-specific hemorrhage 4 days post-AOE. Analysis of the temporal Wnt/ß-catenin driven CNS vascular development in zebrafish also suggested that Axin1 iEC- OE led to CNS vascular regression and impaired maturation but not inhibition of ongoing angiogenesis within the CNS. Transcriptomic profiling of isolated, ß-catenin signaling-deficient endothelial cells during early blood-brain barrier-development (E11.5) revealed ECM (extracellular matrix) proteins as one of the most severely deregulated clusters. Among the 20 genes constituting the forebrain endothelial cell-specific response signature, 8 ( Adamtsl2, Apod, Ctsw, Htra3, Pglyrp1, Spock2, Ttyh2, and Wfdc1) encoded bona fide ECM proteins. This specific ß-catenin-responsive ECM signature was also repressed in Axin1 iEC- OE and endothelial cell-specific ß-catenin-knockout mice ( Ctnnb1-KOiEC) during initial blood-brain barrier maturation (E14.5), consistent with an important role of Wnt/ß-catenin signaling in orchestrating the development of the forebrain vascular ECM. Conclusions- These results suggest a novel mechanism of establishing a CNS endothelium-specific ECM signature downstream of Wnt-ß-catenin that impact spatiotemporally on blood-brain barrier differentiation during forebrain vessel development. Visual Overview- An online visual overview is available for this article.


Assuntos
Matriz Extracelular/fisiologia , Prosencéfalo/irrigação sanguínea , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Animais , Proteína Axina/fisiologia , Barreira Hematoencefálica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Remodelação Vascular , Peixe-Zebra
10.
Histol Histopathol ; 31(4): 349-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26493939

RESUMO

Epithelial Cell Adhesion Molecule (EpCAM) has been discovered as one of the first tumor-specific antigens overexpressed in epithelial cancer. The present review focuses on the role of EpCAM in physiology and homeostasis of epithelia. Recent research pointed to a close interaction of EpCAM with other cell-cell contact molecules like E-cadherin and claudins and an intimate crosstalk with Wnt and TGF-beta signaling in the regulation of cell growth. Moreover, EpCAM has been shown to modulate trans-epithelial migration processes of white blood cells. Mutations of the EpCAM gene lead to disturbances of epithelial homeostasis and cellular differentiation from the stem cell compartment. In the intestinal tract EpCAM mutations contribute to congenital tufting enteropathy. Regarding tumorigenesis EpCAM can act as an oncogene still depending on additional driver mutations and epithelial phenotype of tumor cells. Tumor cells display increased EpCAM expression that often correlates with the loss of strict basolateral localization. Many tumors show enhanced regulated intramembrane proteolysis (RIP) of EpCAM and loose EpCAM expression under conditions of epithelial to mesenchymal transition. The resulting extracellular EpEX and intracellular EpICD fragments mediate proliferative signals to the cell. Resulting fragments can be validated either by sensitive enzyme-linked immune-sandwich assays (EpEX) or by immunohistochemistry (EpICD). The present review gives an overview on the detection of EpCAM fragments as predictive markers for disease progression and survival of cancer patients.


Assuntos
Molécula de Adesão da Célula Epitelial/metabolismo , Epitélio/metabolismo , Epitélio/fisiologia , Animais , Homeostase/fisiologia , Humanos
11.
BMC Cancer ; 15: 372, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947366

RESUMO

BACKGROUND: EpCAM is highly expressed on membrane of epithelial tumor cells and has been detected as soluble/secreted (sEpCAM) in serum of cancer patients. In this study we established an ELISA for in vitro diagnostics to measure sEpCAM concentrations in ascites. Moreover, we evaluated the influence of sEpCAM levels on catumaxomab (antibody)--dependent cellular cytotoxicity (ADCC). METHODS: Ascites specimens from cancer patients with positive (C+, n = 49) and negative (C-, n = 22) cytology and ascites of patients with liver cirrhosis (LC, n = 31) were collected. All cell-free plasma samples were analyzed for sEpCAM levels with a sandwich ELISA system established and validated by a human recombinant EpCAM standard for measurements in ascites as biological matrix. In addition, we evaluated effects of different sEpCAM concentrations on catumaxomab-dependent cell-mediated cytotoxicity (ADCC) with human peripheral blood mononuclear cells (PBMNCs) and human tumor cells. RESULTS: Our ELISA showed a high specificity for secreted EpCAM as determined by control HEK293FT cell lines stably expressing intracellular (EpICD), extracellular (EpEX) and the full-length protein (EpCAM) as fusion proteins. The lower limit of quantification was 200 pg/mL and the linear quantification range up to 5,000 pg/mL in ascites as biological matrix. Significant levels of sEpCAM were found in 39% of C+, 14% of C- and 13% of LC ascites samples. Higher concentrations of sEpCAM were detectable in C+ (mean: 1,015 pg/mL) than in C- (mean: 449 pg/mL; p = 0.04) or LC (mean: 326 pg/mL; p = 0.01). Soluble EpCAM concentration of 1 ng/mL significantly inhibited ADCC of PBMNCs on EpCAM overexpressing target cells. CONCLUSION: Elevated concentrations of sEpCAM can be found in a subgroup of C+ and also in a small group of C- patients. We consider that sEpCAM levels in different tumor entities and individual patients should be evaluated prior to applying anti-EpCAM antibody-based cancer therapies, since sEpCAM neutralizes catumaxomab activity, making therapy less efficient.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos de Neoplasias/metabolismo , Ascite/metabolismo , Ascite/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica , Molécula de Adesão da Célula Epitelial , Células HEK293 , Humanos , Cirrose Hepática/patologia , Neoplasias/patologia , Estudos Retrospectivos
12.
J Vis Exp ; (99): e52665, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25993267

RESUMO

Multiple myeloma (MM), a malignant plasma cell disease, remains incurable and novel drugs are required to improve the prognosis of patients. Due to the lack of the bone microenvironment and auto/paracrine growth factors human MM cells are difficult to cultivate. Therefore, there is an urgent need to establish proper in vitro and in vivo culture systems to study the action of novel therapeutics on human MM cells. Here we present a model to grow human multiple myeloma cells in a complex 3D environment in vitro and in vivo. MM cell lines OPM-2 and RPMI-8226 were transfected to express the transgene GFP and were cultivated in the presence of human mesenchymal cells and collagen type-I matrix as three-dimensional spheroids. In addition, spheroids were grafted on the chorioallantoic membrane (CAM) of chicken embryos and tumor growth was monitored by stereo fluorescence microscopy. Both models allow the study of novel therapeutic drugs in a complex 3D environment and the quantification of the tumor cell mass after homogenization of grafts in a transgene-specific GFP-ELISA. Moreover, angiogenic responses of the host and invasion of tumor cells into the subjacent host tissue can be monitored daily by a stereo microscope and analyzed by immunohistochemical staining against human tumor cells (Ki-67, CD138, Vimentin) or host mural cells covering blood vessels (desmin/ASMA). In conclusion, the onplant system allows studying MM cell growth and angiogenesis in a complex 3D environment and enables screening for novel therapeutic compounds targeting survival and proliferation of MM cells.


Assuntos
Mieloma Múltiplo/irrigação sanguínea , Mieloma Múltiplo/patologia , Transplante de Neoplasias/métodos , Animais , Embrião de Galinha , Galinhas , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/cirurgia , Xenoenxertos , Humanos , Microscopia de Fluorescência/métodos , Mieloma Múltiplo/cirurgia , Invasividade Neoplásica , Neovascularização Patológica/patologia
13.
Histopathology ; 64(5): 683-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24117877

RESUMO

AIMS: Epithelial cell adhesion molecule (EpCAM) is a widely used immunohistochemical marker for epithelial human malignancies. Antibodies to target EpCAM are usually directed against its ectodomain (EpEX), but do not detect the intracellular domain (EpICD). The aim of this study was to compare membranous EpEX versus EpICD expression by immunohistochemistry. METHODS AND RESULTS: Concurrent EpEX and EpICD expression was investigated retrospectively in cancerous and matched non-neoplastic tissue samples from patients with pancreatic adenocarcinoma. In total, 317 paired samples of pancreatic tissue from 88 patients were analysed and correlated with clinicopathological parameters. In non-cancerous tissue, a high concordance of membranous EpEX and EpICD expression was observed and defined as the expression of the full-length EpCAM (EpEX(+)/EpICD(+) phenotype, EpCAM(MF)), which was highly predominant. In contrast, while most tumour samples were EpEX positive, loss of membranous EpICD expression (EpEX(+)/EpICD(-) phenotype, EpCAM(MT)) was observed in one-third of cases, and these patients had a significantly shortened disease-free and overall survival. CONCLUSIONS: This study demonstrates for the first time that loss of membranous EpICD expression is a frequent event and predicts poor prognosis in patients with pancreatic cancer. Additional studies evaluating the predictive and prognostic value of the expression of different membranous EpCAM variants are warranted in epithelial cancers.


Assuntos
Adenocarcinoma/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/patologia , Idoso , Especificidade de Anticorpos , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/química , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/imunologia , Molécula de Adesão da Célula Epitelial , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Prognóstico , Estrutura Terciária de Proteína , Estudos Retrospectivos , Análise Serial de Tecidos
14.
Cancers (Basel) ; 5(4): 1355-78, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24202449

RESUMO

Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201) and tacalcitol (PRI-2191) were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

15.
Mol Cancer ; 12: 56, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758908

RESUMO

INTRODUCTION: The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs). METHODS: HMECs were transfected by an adenoviral system for transient overexpression of EpCAM. Thereafter, changes in cell proliferation and migration were studied using a real time measurement system. Target gene expression was evaluated by transcriptome analysis in proliferating and polarized HMEC cultures. A Chicken Chorioallantoic Membrane (CAM) xenograft model was used to study effects on in vivo growth of HMECs. RESULTS: EpCAM overexpression in HMECs did not significantly alter gene expression profile of proliferating or growth arrested cells. Proliferating HMECs displayed predominantly glycosylated EpCAM isoforms and were inhibited in cell proliferation and migration by upregulation of p27(KIP1) and p53. HMECs with overexpression of EpCAM showed a down regulation of E-cadherin. Moreover, cells were more resistant to TGF-ß1 induced growth arrest and maintained longer capacities to proliferate in vitro. EpCAM overexpressing HMECs xenografts in chicken embryos showed hyperplastic growth, lack of lumen formation and increased infiltrates of the chicken leukocytes. CONCLUSIONS: EpCAM revealed oncogenic features in normal human breast cells by inducing resistance to TGF-ß1-mediated growth arrest and supporting a cell phenotype with longer proliferative capacities in vitro. EpCAM overexpression resulted in hyperplastic growth in vivo. Thus, we suggest that EpCAM acts as a prosurvival factor counteracting terminal differentiation processes in normal mammary glands.


Assuntos
Antígenos de Neoplasias/genética , Mama/metabolismo , Mama/patologia , Moléculas de Adesão Celular/genética , Células Epiteliais/metabolismo , Expressão Gênica , Animais , Antígenos de Neoplasias/metabolismo , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Molécula de Adesão da Célula Epitelial , Feminino , Perfilação da Expressão Gênica , Humanos , Hiperplasia , Cultura Primária de Células , Fator de Crescimento Transformador beta1/farmacologia , Transplante Heterólogo
16.
BMC Cancer ; 12: 501, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110550

RESUMO

BACKGROUND: The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. METHODS: For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAMhigh breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAMlow breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. RESULTS: In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAMhigh cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAMlow cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. CONCLUSIONS: The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer.


Assuntos
Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Animais , Antígenos de Neoplasias/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Molécula de Adesão da Célula Epitelial , Células HEK293 , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fenótipo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Gene Expr Patterns ; 11(8): 491-500, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21889616

RESUMO

Dickkopf (dkk) genes belong to the family of secreted wnt-inhibitors with conserved cysteine-rich domains. In contrast to the prototype dkk1, dkk3 does not modulate canonical Wnt/ß-catenin signalling. Until now, neither functions nor interaction partners of dkk3 in lower vertebrates have been described. In this study we cloned two dkk3 homologues dkk3a(dkk3l) and dkk3b(dkk3) and a dkk1 homologue dkk1a of the zebrafish and studied their expression patterns during embryonic development in comparison to the known dkk1b gene. Moreover, mutants with defects in hedgehog signalling (smo), notch (mib) signalling, nodal signalling (Zoep) or retinoic acid synthesis (neckless) were analyzed for changes in dkk3 gene expression. In situ hybridization analyses showed a dynamic expression of dkk1a and dkk1b primarily in epidermal structures of the otic vesicle, lens, branchial arches and fin folds. While dkk1a was expressed mainly in deep tissues, dkk1b expression was mainly found in protrusions at the outer surface of the branchial arch epidermis. In contrast, dkk3 genes showed expression in different tissues. Strong signals for dkk3a(dkk3l) were present in various neuronal structures of the head, whereas dkk3b(dkk3) expression was restricted mainly to endocrine cells of the pancreas and to the brachial arches. In summary, both dkk3 genes display a unique and distinct expression pattern in late embryonic development, pointing to a specific role during neuronal and pancreatic cell differentiation.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Diferenciação Celular/fisiologia , Embrião não Mamífero/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Especificidade de Órgãos/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
BMC Cancer ; 11: 45, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21281469

RESUMO

BACKGROUND: Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients. METHODS: In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/ß-catenin pathway. To evaluate the accumulation of ß-catenin in the nucleus, a subcellular fractionation assay was performed. RESULTS: For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578TEpCAM and MDA-MB-231EpCAM indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231 EpCAM but not Hs578T EpCAM cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression. CONCLUSIONS: These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.


Assuntos
Antígenos de Neoplasias/biossíntese , Neoplasias da Mama/metabolismo , Moléculas de Adesão Celular/biossíntese , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Docetaxel , Molécula de Adesão da Célula Epitelial , Feminino , Perfilação da Expressão Gênica , Humanos , Microscopia Confocal , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Frações Subcelulares/metabolismo , Taxoides/farmacologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA