Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Pathog ; 18(9): e1010836, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095021

RESUMO

Pathogenic Chlamydia species are coccoid bacteria that use the rod-shape determining protein MreB to direct septal peptidoglycan synthesis during their polarized cell division process. How the site of polarized budding is determined in this bacterium, where contextual features like membrane curvature are seemingly identical, is unclear. We hypothesized that the accumulation of the phospholipid, cardiolipin (CL), in specific regions of the cell membrane induces localized membrane changes that trigger the recruitment of MreB to the site where the bud will arise. To test this, we ectopically expressed cardiolipin synthase (Cls) and observed a polar distribution for this enzyme in Chlamydia trachomatis. In early division intermediates, Cls was restricted to the bud site where MreB is localized and peptidoglycan synthesis is initiated. The localization profile of 6xHis tagged Cls (Cls_6xH) throughout division mimicked the distribution of lipids that stain with NAO, a dye that labels CL. Treatment of Chlamydia with 3',6-dinonylneamine (diNN), an antibiotic targeting CL-containing membrane domains, resulted in redistribution of Cls_6xH and NAO-staining phospholipids. In addition, 6xHis tagged MreB localization was altered by diNN treatment, suggesting an upstream regulatory role for CL-containing membranes in directing the assembly of MreB. This hypothesis is consistent with the observation that the clustered localization of Cls_6xH is not dependent upon MreB function or peptidoglycan synthesis. Furthermore, expression of a CL-binding protein at the inner membrane of C. trachomatis dramatically inhibited bacterial growth supporting the importance of CL in the division process. Our findings implicate a critical role for localized CL synthesis in driving MreB assembly at the bud site during the polarized cell division of Chlamydia.


Assuntos
Chlamydia trachomatis , Peptidoglicano , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas , Divisão Celular , Chlamydia trachomatis/metabolismo , Fosfolipídeos/metabolismo
2.
Infect Immun ; 89(7): e0010821, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33875479

RESUMO

The ability to inducibly repress gene expression is critical to the study of organisms, like Chlamydia, with reduced genomes in which the majority of genes are likely to be essential. We recently described the feasibility of a CRISPR interference (CRISPRi) system to inducibly repress gene expression in Chlamydia trachomatis. However, the initial system suffered from some drawbacks, primarily leaky expression of the anhydrotetracycline (aTc)-inducible dCas9 ortholog and plasmid instability, which prevented population-wide studies (e.g., transcript analyses) of the effects of knockdown. Here, we describe various modifications to the original system that have allowed us to measure gene expression changes within a transformed population of C. trachomatis serovar L2. These modifications include (i) a change in the vector backbone, (ii) the introduction of a weaker ribosome binding site driving dCas9 translation, and (iii) the addition of a degradation tag to dCas9 itself. With these changes, we demonstrate the ability to inducibly repress a target gene sequence, as measured by the absence of protein by immunofluorescence analysis and by decreased transcript levels. Importantly, the expression of dCas9 alone (i.e., without a guide RNA [gRNA]) had minimal impact on chlamydial growth or development. We also describe complementation of the knockdown effect by introducing a transcriptional fusion of the target gene 3' to dCas9. Finally, we demonstrate the functionality of a second CRISPRi system based on a dCas12 system that expands the number of potential chromosomal targets. These tools should provide the ability to study essential gene function in Chlamydia.


Assuntos
Sistemas CRISPR-Cas , Chlamydia trachomatis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Sítios de Ligação , Infecções por Chlamydia/microbiologia , Marcação de Genes , Plasmídeos/genética , RNA Guia de Cinetoplastídeos , Ribossomos/metabolismo
3.
Soft Matter ; 15(47): 9640-9646, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31670364

RESUMO

Elastin-like polymers (ELPs) are frequently used in a variety of bioengineering applications because of their stimuli-responsive properties. Above their transition temperature, ELPs will adopt different structures that promote intra- and intermolecular hydrophobic contacts to minimize unfavorable interactions with an aqueous environment. We electrochemically characterize the stimuli-responsive behavior of surface-immobilized ELPs corresponding to two proposed states: extended and collapsed. In the extended state the ELPs are more solvated. In the collapsed state, triggered by introducing an environmental stimulus, non-polar intramolecular contacts within ELPs are favored, resulting in quantifiable morphological changes on the surface characterized using electrochemical impedance spectroscopy (EIS). Charge transfer resistance, a component of impedance, was shown to increase after exposing an ELP modified electrode to a high salt concentration environment (3.0 M NaCl). An increase in charge transfer resistance indicates an increase in the insulating layer on the electrode surface consistent with the proposed mechanism of collapse, as the ELPs have undergone morphological changes to hinder the kinetics of the redox couple exchange. Further characterization of the surface-immobilized ELPs showed a reproducible surface modification, as well as reversibility and tunability of the stimuli-response.


Assuntos
Elastina/química , Cloreto de Sódio/química , Espectroscopia Dielétrica , Elastina/biossíntese , Técnicas Eletroquímicas , Escherichia coli/genética , Escherichia coli/metabolismo , Ouro/química , Compostos de Sulfidrila/química , Propriedades de Superfície
4.
PLoS One ; 14(5): e0216406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071134

RESUMO

Biological and bioinspired polymer microparticles have broad biomedical and industrial applications, including drug delivery, tissue engineering, surface modification, environmental remediation, imaging, and sensing. Full realization of the potential of biopolymer microparticles will require methods for rigorous characterization of particle sizes, morphologies, and dynamics, so that researchers may correlate particle characteristics with synthesis methods and desired functions. Toward this end, we evaluated biopolymer microparticles using flow imaging microscopy. This technology is widely used in the biopharmaceutical industry but is not yet well-known among the materials community. Our polymer, a genetically engineered elastin-like polypeptide (ELP), self-assembles into micron-scale coacervates. We performed flow imaging of ELP coacervates using two different instruments, one with a lower size limit of approximately 2 microns, the other with a lower size limit of approximately 300 nanometers. We validated flow imaging results by comparison with dynamic light scattering and atomic force microscopy analyses. We explored the effects of various solvent conditions on ELP coacervate size, morphology, and behavior, such as the dispersion of single particles versus aggregates. We found that flow imaging is a superior tool for rapid and thorough particle analysis of ELP coacervates in solution. We anticipate that researchers studying many types of microscale protein or polymer assemblies will be interested in flow imaging as a tool for quantitative, solution-based characterization.


Assuntos
Sistemas de Liberação de Medicamentos , Elastina/química , Microscopia , Avaliação Pré-Clínica de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA