Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 64(11): 1879-91, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27444244

RESUMO

Thyroid hormones (THs) and transferrin (Tf) are factors capable of favoring myelination due to their positive effects on oligodendroglial cell (OLG) differentiation. The first notion of a combined effect of apotransferrin (aTf) and TH emerged from experiments conducted in young hyperthyroid animals, which showed a seven-fold increase in the expression of Tf mRNA and precocious myelination when compared with control animals. The mechanism underlying this phenomenon in young hyperthyroid rats could consist of an increase in Tf synthesis, which in the CNS is almost exclusively produced by OLG. Overall, our results show that, during the initial stages of OLG differentiation, Tf synthesis triggers thyroid hormone receptor alpha 1 (TRα1) expression in the subventricular zone (SVZ) and promotes proliferating cells to become responsive to this trophic factor. Exposure to TH could then regulate Tf expression through TRα1 and promote the induction of thyroid hormone receptor beta (TRß) expression, which mediates TH effects on myelination through the activation of final OLG differentiation. This regulation of the combined effects of Tf and THs implies that both factors are fundamental actors during oligodendrogenesis. GLIA 2016;64:1879-1891.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Oligodendroglia/fisiologia , Transferrina/metabolismo , Transferrina/farmacologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Ventrículos Laterais/citologia , Proteína Básica da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Células-Tronco/efeitos dos fármacos , Hormônios Tireóideos , Transferrina/genética
2.
Exp Neurol ; 265: 129-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595122

RESUMO

Myelination is a concerted mechanism tightly regulated in the brain. Although several factors are known to participate during this process, the complete sequence of events is far from being fully elucidated. Separate effects of apotransferrin (aTf) and thyroid hormone (TH) are well documented on rat myelin formation. TH promotes the maturation of oligodendrocyte progenitors (OPCs) into myelinating oligodendrocytes (OLGs), while aTf is able to induce the commitment of neural stem cells (NSCs) toward the oligodendroglial linage and favors OLG maturation. We have also demonstrated that Tf mRNA exhibited a seven-fold increase in hyperthyroid animals. These observations have led us to hypothesize that both factors may interplay during oligodendrogenesis. To assess the combined effects of aTf and TH on proper myelination in the rat brain, Tf expression and oligodendroglial maturation were evaluated at postnatal days 10 (P10) and 20 (P20) in several experimental groups. At P10, an up-regulation of both Tf mRNA and protein, as well as myelination, was found in hyperthyroid animals, while a decrease in Tf mRNA levels and myelin formation was detected in the hypothyroid group. At P20, no differences were found either in Tf mRNA or protein levels between hyperthyroid and control (Ctrol) rats, although differences in OLG differentiation remained. Also at P20, hypothyroid animals showed decreased Tf mRNA and protein levels accompanied with a less mature myelinating phenotype. Moreover, TH and aTf differentially regulate the expression of KLF9 transcription factor as well as TRα and TRß at P10 and P20. Our results suggest that TH is necessary early in OLG development for aTf action, as exogenous aTf administration was unable to counteract the effect of low TH levels in the hypothyroid state in all the time points analyzed. Furthermore, the fact that hyperthyroidism induced an increase in Tf expression and aTf-dependent regulation of TRα strongly suggests that Tf could be involved in some of TH later effects on OLG maturation. Here we describe the possible relationship between TH and aTf and its implication in oligodendrogenesis.


Assuntos
Apoproteínas/biossíntese , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/metabolismo , Hormônios Tireóideos/biossíntese , Transferrina/biossíntese , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA