Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Total Environ ; 931: 172858, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38714260

RESUMO

Multi-element compound-specific stable isotope analysis (ME-CSIA) allows monitoring the environmental behavior and transformation of most common and persistent contaminants. Recent advancements in analytical techniques have extended the applicability of ME-CSIA to organic micropollutants, including pesticides. Nevertheless, the application of this methodology remains unexplored concerning harmful insecticides such as methoxychlor, a polar organochlorine pesticide usually detected in soil and groundwater. This study introduces methods for dual carbon and chlorine compound-specific stable isotope analysis (δ13C-CSIA and δ37Cl-CSIA) of both methoxychlor and its metabolite, methoxychlor olefin, with a sensitivity down to 10 and 100 mg/L, and a precision lower than 0.3 and 0.5 ‰ for carbon and chlorine CSIA, respectively. Additionally, three extraction and preconcentration techniques suitable for ME-CSIA of the target pesticides at environmentally relevant concentrations were also developed. Solid-phase extraction (SPE) and liquid-solid extraction (LSE) effectively extracted methoxychlor (107 ± 27 % and 87 ± 13 %, respectively) and its metabolite (91 ± 27 % and 106 ± 14 %, respectively) from water and aquifer slurry samples, respectively, with high accuracy (Δδ13C and Δδ37Cl ≤ ± 1 ‰). Combining CSIA with polar organic chemical integrative samplers (POCISs) for the extraction of methoxychlor and methoxychlor olefin from water samples resulted in insignificant fractionation for POCIS-CSIA (Δδ13C ≤ ± 1 ‰). A relevant sorption of methoxychlor was detected within the polyethersulfones membranes of the POCISs resulting in temporary carbon isotope fractionation depending on the sorbed mass fraction during the first deployment days. This highlights the critical role of the interactions of polar analytes with POCIS sorbents and membranes in the performance of this method. Altogether, this study proposes a proof of concept for ME-CSIA of methoxychlor and its metabolites, opening the door for future investigations of their sources and transformation processes in contaminated sites.

2.
Chemosphere ; 352: 141488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368960

RESUMO

By assessing the changes in stable isotope compositions within individual pesticide molecules, Compound Specific Isotope Analysis (CSIA) holds the potential to identify and differentiate sources and quantify pesticide degradation in the environment. However, the environmental application of pesticide CSIA is limited by the general lack of knowledge regarding the initial isotopic composition of active substances in commercially available formulations used by farmers. To address this limitation, we established a database aimed at cataloguing and disseminating isotopic signatures in commercial formulations to expand the use of pesticide CSIA. Our study involved the collection of 25 analytical standards and 120 commercial pesticide formulations from 23 manufacturers. Subsequently, 59 commercial formulations and 25 standards were extracted, and each of their active substance was analyzed for both δ13C (n = 84) and δ15N CSIA (n = 43). The extraction of pesticides did not cause significant isotope fractionation (Δ13C and Δ15N < 1‰). Incorporating existing literature data, stable carbon and nitrogen isotope signatures varied in a relatively narrow range among pesticide formulations for different pesticides (Δ13C and Δ15N < 10‰) and within different formulations for a single substance (Δ13C and Δ15N < 2‰). Overall, this suggests that pesticide CSIA is more suited for identifying pesticide transformation processes rather than differentiating pesticide sources. Moreover, an inter-laboratory comparison showed similar δ13C (Δ13C ≤ 1.2 ‰) for the targeted substances albeit varying GC-IRMS instruments. Insignificant carbon isotopic fractionation (Δ13C < 0.5‰) was observed after 4 years of storing the same pesticide formulations, confirming their viability for long-term storage at 4 °C and future inter-laboratory comparison exercises. Altogether, the ISOTOPEST database, in open access for public use and additional contributions, marks a significant advancement in establishing an environmentally relevant pesticide CSIA approach.


Assuntos
Praguicidas , Praguicidas/análise , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Fracionamento Químico
3.
Chemosphere ; 313: 137341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423721

RESUMO

Knowledge of the degradation extent and pathways of fungicides in the environment is scarce. Fungicides may have isomers with distinct fungal-control efficiency, toxicity and fate in the environment, requiring specific approaches to follow up the degradation of individual isomers. Here we examined the degradation of the widely used fungicide dimethomorph (DIM) in a vineyard catchment using ratios of carbon stable isotopes (δ13C) and E/Z isomer fractionation (IF(Z)). In a microcosm laboratory experiment, DIM degradation half-life in soil was 20 ± 3 days, and was associated with significant isomeric (ΔIF(Z) = +30%) and isotopic (Δδ13C up to 7‰) fractionation. This corresponds to an isomer enrichment factor of εIR = -54 ± 6%, suggesting isomer selectivity and similar carbon stable isotopic fractionation values of εDIM-(Z) = -1.6 ± 0.2‰ and εDIM-(E) = -1.5 ± 0.2‰. Isomeric and isotopic fractionation values were used to estimate DIM degradation in topsoil and transport in a vineyard catchment over two wine-growing seasons. DIM concentrations following DIM application were up to 3 µg g-1 in topsoil and 29 µg L-1 in runoff water at the catchment outlet. Accordingly, the IF(Z) and δ13C values of DIM in soil were similar to those observed in DIM commercial formulations. The gradual enrichments in DIM-(Z) and 13C of the residual DIM in soil indicated DIM biodegradation over time. DIM biodegradation estimated based on E/Z isomer and carbon stable isotope ratios in topsoil and runoff water ranged from 0% after DIM application up to 100% at the end of the wine-growing season. DIM biodegradation was overestimated compared to conventional approaches relying on DIM mass balance, field concentrations and half-lives. Altogether, our study highlights the usefulness of combining carbon stable isotopes, E/Z isomers and classical approaches to estimate fungicide degradation at the catchment scale, and uncovers difficulties in using laboratory-derived values in field studies.


Assuntos
Fungicidas Industriais , Fazendas , Fungicidas Industriais/análise , Isótopos de Carbono/análise , Solo , Fracionamento Químico , Biodegradação Ambiental , Água
4.
Microorganisms ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422372

RESUMO

Metformin is one of the most prescribed antidiabetic agents worldwide and is also considered for other therapeutic applications including cancer and endocrine disorders. It is largely unmetabolized by human enzymes and its presence in the environment has raised concern, with reported toxic effects on aquatic life and potentially also on humans. We report on the isolation and characterisation of strain MD1, an aerobic methylotrophic bacterium growing with metformin as its sole carbon, nitrogen and energy source. Strain MD1 degrades metformin into dimethylamine used for growth, and guanylurea as a side-product. Sequence analysis of its fully assembled genome showed its affiliation to Aminobacter niigataensis. Differential proteomics and transcriptomics, as well as mini-transposon mutagenesis of the strain, point to genes and proteins essential for growth with metformin and potentially associated with hydrolytic C-N cleavage of metformin or with cellular transport of metformin and guanylurea. The obtained results suggest the recent evolution of the growth-supporting capacity of strain MD1 to degrade metformin. Our results identify candidate proteins of the enzymatic system for metformin transformation in strain MD1 and will inform future research on the fate of metformin and its degradation products in the environment and in humans.

5.
Sci Total Environ ; 842: 156735, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738369

RESUMO

Pesticides lead to surface water pollution and ecotoxicological effects on aquatic biota. Novel strategies are required to evaluate the contribution of degradation to the overall pesticide dissipation in surface waters. Here, we combined polar organic chemical integrative samplers (POCIS) with compound-specific isotope analysis (CSIA) to trace in situ pesticide degradation in artificial ponds and agricultural streams. The application of pesticide CSIA to surface waters is currently restricted due to environmental concentrations in the low µg.L-1 range, requiring processing of large water volumes. A series of laboratory experiments showed that POCIS enables preconcentration and accurate recording of the carbon isotope signatures (δ13C) of common pesticides under simulated surface water conditions and for various scenarios. Commercial and in-house POCIS did not significantly (Δδ13C < 1 %) change the δ13C of pesticides during uptake, extraction, and δ13C measurements of pesticides, independently of the pesticide concentrations (1-10 µg.L-1) or the flow speeds (6 or 14 cm.s-1). However, simulated rainfall events of pesticide runoff affected the δ13C of pesticides in POCIS. In-house POCIS coupled with CSIA of pesticides were also tested under different field conditions, including three flow-through and off-stream ponds and one stream receiving pesticides from agricultural catchments. The POCIS-CSIA method enabled to determine whether degradation of S-metolachlor and dimethomorph mainly occurred in agricultural soil or surface waters. Comparison of δ13C of S-metolachlor in POCIS deployed in a stream with δ13C of S-metolachlor in commercial formulations suggested runoff of fresh S-metolachlor in the midstream sampling site, which was not recorded in grab samples. Altogether, our study highlights that the POCIS-CSIA approach represents a unique opportunity to evaluate the contribution of degradation to the overall dissipation of pesticides in surface waters.


Assuntos
Praguicidas , Poluentes Químicos da Água , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Praguicidas/análise , Água/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 56(4): 2258-2268, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114086

RESUMO

Photochemical reactions are major pathways for the removal of Hg species from aquatic ecosystems, lowering the concentration of monomethylmercury (MMHg) and its bioaccumulation in foodwebs. Here, we investigated the rates and environmental drivers of MMHg photodegradation and inorganic Hg (IHg) photoreduction in waters of two high-altitude lakes from the Bolivian Altiplano representing meso- to eutrophic conditions. We incubated three contrasting waters in situ at two depths after adding Hg-enriched isotopic species to derive rate constants. We found that transformations mostly occurred in subsurface waters exposed to UV radiation and were mainly modulated by the dissolved organic matter (DOM) level. In parallel, we incubated the same waters after the addition of low concentrations of natural MMHg and followed the stable isotope composition of the remaining Hg species by compound-specific isotope analysis allowing the determination of enrichment factors and mass-independent fractionation (MIF) slopes (Δ199Hg/Δ201Hg) during in situ MMHg photodegradation in natural waters. We found that MIF enrichment factors potentially range from -11 to -19‰ and average -14.3 ± 0.6‰ (1 SE). The MIF slope diverged depending on the DOM level, ranging from 1.24 ± 0.03 to 1.34 ± 0.02 for the low and high DOM waters, respectively, and matched the MMHg MIF slope recorded in fish from the same lake. Our in situ results thus reveal (i) a relatively similar extent of Hg isotopic fractionation during MMHg photodegradation among contrasted natural waters and compared to previous laboratory experiments and (ii) that the MMHg MIF recorded in fish is characteristic for the MMHg bonding environment. They will enable a better assessment of the extent and conditions conducive to MMHg photodegradation in aquatic ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Altitude , Animais , Bolívia , Ecossistema , Monitoramento Ambiental , Peixes/metabolismo , Isótopos , Lagos/química , Mercúrio/análise , Isótopos de Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Água/metabolismo , Poluentes Químicos da Água/análise
7.
Environ Sci Process Impacts ; 23(11): 1791-1802, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34709265

RESUMO

Knowledge of direct and indirect photodegradation of pesticides and associated isotope fractionation can help to assess pesticide degradation in surface waters. Here, we investigated carbon (C) and nitrogen (N) isotope fractionation during direct and indirect photodegradation of the herbicides atrazine and S-metolachlor in synthetic agriculturally impacted surface waters containing nitrates (20 mg L-1) and dissolved organic matter (DOM, 5.4 mgC L-1). Atrazine and S-metolachlor were quickly photodegraded by both direct and indirect processes (half-lives <5 and <7 days, respectively). DOM slowed down photodegradation while nitrates increased degradation rates. The analysis of transformation products showed that oxidation mediated by hydroxyl radicals (HO˙) predominated during indirect photodegradation. UV light (254 nm) led to significant C and N isotope fractionation, yielding isotopic fractionation values εC = 2.7 ± 0.3 and 0.8 ± 0.1‰, and εN = 2.4 ± 0.3 and -2.6 ± 0.7‰ for atrazine and S-metolachlor, respectively. In contrast, photodegradation under simulated sunlight led to negligible C and slight N isotope fractionation, emphasizing the effect of the radiation wavelengths on the isotope fractionation induced by direct photodegradation. Altogether, these results highlight the importance of using simulated sunlight to obtain environmentally-relevant isotopic fractionation values and to distinguish photodegradation and other dissipation pathways in surface waters.


Assuntos
Atrazina , Poluentes Químicos da Água , Acetamidas , Isótopos , Fotólise , Água , Poluentes Químicos da Água/análise
8.
Nature ; 597(7878): 678-682, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588669

RESUMO

Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(II) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(II) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(II) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02‰, lying in between atmospheric Hg(0) and Hg(II) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24-50%) atmospheric Hg(II) gross deposition and 58% (50-76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(II) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.

9.
Water Res ; 203: 117530, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388502

RESUMO

Dichloromethane (DCM) is a toxic industrial solvent frequently detected in multi-contaminated aquifers. It can be degraded biotically or abiotically, and under oxic or anoxic conditions. The extent and pathways of DCM degradation in aquifers may thus depend on water table fluctuations and microbial responses to hydrochemical variations. Here, we examined the effect of water table fluctuations on DCM biodegradation in two laboratory aquifers fed with O2-depleted DCM-spiked groundwater from a well-characterized former industrial site. Hydrochemistry, stable isotopes of DCM (δ13C and δ37Cl), and bacterial community composition were examined to determine DCM mass removal and degradation pathways under steady-state (static water table) and transient (fluctuating water table) conditions. DCM mass removal was more pronounced under transient (95%) than under steady-state conditions (42%). C and Cl isotopic fractionation values were larger under steady-state (εbulkC = -23.6 ± 3.2‰, and εbulkCl= -8.7 ± 1.6‰) than under transient conditions (εbulkC = -11.8 ± 2.0‰, and εbulkCl = -3.1 ± 0.6‰). Dual C-Cl isotope analysis suggested the prevalence of distinct anaerobic DCM degradation pathways, with ΛC/Cl values of 1.92 ± 0.30 and 3.58 ± 0.42 under steady-state and transient conditions, respectively. Water table fluctuations caused changes in redox conditions and oxygen levels, resulting in a higher relative abundance of Desulfosporosinus (Peptococcaceae family). Taken together, our results show that water table fluctuations enhanced DCM biodegradation, and correlated with bacterial taxa associated with anaerobic DCM degradation. Our integrative approach allows to evaluate anaerobic DCM degradation under dynamic hydrogeological conditions, and may help improving bioremediation strategies at DCM contaminated sites.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Isótopos de Carbono/análise , Laboratórios , Cloreto de Metileno
10.
Sci Total Environ ; 741: 140437, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887001

RESUMO

Rainfall and runoff characteristics may influence off-site export of pesticides into downstream aquatic ecosystems. However, the relationship between rainfall characteristics and pesticide export from small headwater catchments remains elusive due to confounding factors including the application dose and timing and the variation of pesticide stocks in soil. Here we examined the impact of rainfall characteristics on the export of copper (Cu), zinc (Zn) and 12 legacy and currently used synthetic pesticides in surface runoff from a headwater vineyard catchment. Cluster analysis of rainfall intensity, depth and duration of 78 events revealed four distinct rainfall categories, i.e., Small, Long, Moderate and Intense (p < 0.001). Event mean concentrations of pesticides did not differ among rainfall categories (p > 0.05). In contrast, event loads of both dissolved and solid-bound Cu and Zn significantly differed among rainfall categories (p < 0.001). Rainfall depth and intensity significantly correlated with both Cu and Zn loads in runoff (ρs = 0.33 to 0.92, p < 0.002), and might be the main drivers of Cu and Zn export at the catchment scale. In contrast, rainfall depth, intensity or duration did not influence the loads of synthetic pesticides in runoff, even when weekly variations of pesticide stocks in the soil were accounted for. However, intense rainfall-runoff events, that can fragment soil, may control the export of persistent and hydrophobic legacy pesticides stocks in the soil, such as simazine and tetraconazole. Our results show that rainfall characteristics controlled the off-site export of Cu, Zn and legacy synthetic pesticides in a small headwater catchment, whereas the application timing drove the export of currently used synthetic pesticides in runoff. We anticipate our results to be a preliminary step to forecast the influence of regional rainfall patterns on the export of both metallic and synthetic pesticides by surface runoff from small agricultural headwater catchments.

11.
Environ Sci Technol ; 53(3): 1422-1431, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672293

RESUMO

Information on ocean scale drivers of methylmercury levels and variability in tuna is scarce, yet crucial in the context of anthropogenic mercury (Hg) inputs and potential threats to human health. Here we assess Hg concentrations in three commercial tuna species (bigeye, yellowfin, and albacore, n = 1000) from the Western and Central Pacific Ocean (WCPO). Models were developed to map regional Hg variance and understand the main drivers. Mercury concentrations are enriched in southern latitudes (10°S-20°S) relative to the equator (0°-10°S) for each species, with bigeye exhibiting the strongest spatial gradients. Fish size is the primary factor explaining Hg variance but physical oceanography also contributes, with higher Hg concentrations in regions exhibiting deeper thermoclines. Tuna trophic position and oceanic primary productivity were of weaker importance. Predictive models perform well in the Central Equatorial Pacific and Hawaii, but underestimate Hg concentrations in the Eastern Pacific. A literature review from the global ocean indicates that size tends to govern tuna Hg concentrations, however regional information on vertical habitats, methylmercury production, and/or Hg inputs are needed to understand Hg distribution at a broader scale. Finally, this study establishes a geographical context of Hg levels to weigh the risks and benefits of tuna consumption in the WCPO.


Assuntos
Mercúrio , Atum , Animais , Havaí , Humanos , Oceanos e Mares , Oceano Pacífico
12.
Chemosphere ; 213: 368-376, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30241081

RESUMO

Compound-specific Stable Isotope Analysis (CSIA) has been recently established as a tool to study pesticide degradation in the environment. Among degradative processes, hydrolysis is environmentally relevant as it can be chemically or enzymatically mediated. Here, CSIA was used to examine stable carbon and nitrogen isotope fractionation during abiotic hydrolysis of legacy or currently used pesticides (chloroacetanilide herbicides: Acetochlor, Alachlor, S-Metolachlor and Butachlor, acylalanine fungicide: Metalaxyl, and triazine herbicide: Atrazine). Degradation products analysis and CN dual-CSIA allowed to infer hydrolytic degradation pathways from carbon and nitrogen isotopic fractionation. Carbon isotopic fractionation for alkaline hydrolysis revealed similar apparent kinetic isotope effects (AKIEC = 1.03-1.07) for the 6 pesticides, which were consistent with SN2 type nucleophilic substitutions. Neither enantio-selectivity (EF ≈ 0.5) nor enantio-specific isotope fractionation occurred during hydrolysis of R (AKIEC = 1.04 ±â€¯0.01) and S (AKIEC = 1.04 ±â€¯0.02) enantiomers of a racemic mixture of Metalaxyl. Dual element isotope plots enabled to tease apart CCl bond breaking of alkane (Λ ≈ εN/εC ≈ 0, Acetochlor, Butachlor) and aromatic π-system (Λ ≈ 0.2, Atrazine) from CO bond breaking by dealkylation (Λ ≈ 0.9, Metalaxyl). Reference values for abiotic versus biotic SN2 reactions derived from carbon and nitrogen CSIA may be used to untangle pesticide degradation pathways and evaluate in situ degradation during natural and engineered remediation.


Assuntos
Isótopos de Carbono/química , Fracionamento Químico/métodos , Isótopos de Nitrogênio/química , Praguicidas/química , Hidrólise
13.
Chemosphere ; 193: 1071-1079, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29874734

RESUMO

In the South-West Europe (Iberian Pyrite Belt), acid mine drainage (AMD) processes are especially problematic because they affect the environmental quality of watersheds, restricting the use of surface water. Recent studies have shown that Cu isotopes are fractionated during the oxidative dissolution of primary sulfide minerals and could be used to trace metal cycling. However the chemistry of Cu in such environment is complex because Cu is redistributed within numerous secondary minerals and strongly dependent on the hydroclimatic conditions that control key parameters (pH, redox conditions). Finally, it remains difficult to compare the various field studies and deliver some strong general tendencies because of these changing conditions. For these reasons, concerted studies on Cu isotopes fractionation in waters impacted by AMD may help to reveal the sources and transport pathways of this important pollutant. To address this issue, we used a representative scenario of strong contamination by AMD in the Iberian Pyrite Belt (SW Spain), the Cobica River. The aim of our study is to measure the Cu isotopes signature in the waters (river, mine lake, water draining waste) of the small Cobica River system (Huelva, Spain), sampled during a short period (8 h) to avoid any change in the hydro-climatic conditions. This provided an instantaneous image of the isotopic Cu signature in a small mining systems and helped us to constrain both the processes affecting Cu isotopes and their use a potential tracer of metals in contaminated environments.


Assuntos
Ácidos/química , Cobre/química , Monitoramento Ambiental/métodos , Isótopos/química , Metais/química , Mineração/métodos , Ácidos/análise , Metais/análise
14.
J Hazard Mater ; 353: 99-107, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29649698

RESUMO

Chiral pesticides are often degraded enantioselectively in soils, leading to disparity among enantiomers that may display different toxicity levels. Monitoring pesticide degradation extents and processes remains out of reach in the field using conventional bulk and enantiomer concentration analyses. Enantioselective stable carbon isotope analysis (ESIA) combines compound specific isotope analysis (CSIA) and enantioselective analysis, and bears potential to distinguish enantiomer degradation from non-destructive dissipation. We developed ESIA of the fungicide Metalaxyl, providing the 13C/12C ratios for S-Metalaxyl and R-Metalaxyl separately, and applied it to follow degradation in soil incubation experiments. Significant enantioselective degradation (kS-MTY = 0.007-0.011 day-1 < kR-MTY = 0.03-0.07 day-1) was associated with isotope fractionation (Δδ13CS-MTY ranging from 2 to 6‰). While R-Metalaxyl degradation was rapid (T1/2≈10 days), concomitant enrichment in heavy isotopes of the persistent S-Metalaxyl occurred after 200 days of incubation (εS-Metalaxyl ranging from -1.3 to -2.7‰). In contrast, initial racemic ratios and isotopic compositions were conserved in abiotic experiments, which indicates the predominance of microbial degradation in soils. Degradation products analysis and apparent kinetic isotope effect (AKIE) suggested hydroxylation as a major enantioselective degradation pathway in our soils. Altogether, our study underscores the potential of ESIA to evaluate the degradation extent and mechanisms of chiral micropollutants in soils.


Assuntos
Alanina/análogos & derivados , Isótopos de Carbono/análise , Fungicidas Industriais/metabolismo , Poluentes do Solo/metabolismo , Alanina/química , Alanina/metabolismo , Biodegradação Ambiental , Fungicidas Industriais/química , Poluentes do Solo/química , Estereoisomerismo
15.
Water Res ; 139: 198-207, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649704

RESUMO

Although pesticides undergo degradation tests prior to use, determining their export, degradation and persistence under field conditions remains a challenge for water resource management. Compound specific isotope analysis (CSIA) can provide evidence of contaminant degradation extent, as it is generally independent of non-destructive dissipation (e.g., dilution, sorption, volatilization) regulating environmental concentrations. While this approach has been successfully implemented in subsurface environments, its application to pesticides in near-surface hydrological contexts at catchment scale is lacking. This study demonstrates the applicability of CSIA to track pesticide degradation and export at catchment scale and identify pesticide source areas contributing to changes in stable isotope signature in stream discharge under dynamic hydrological contexts. Based on maximum shifts in carbon stable isotope signatures (Δδ13C  = 4.6 ± 0.5‰) of S-metolachlor (S-met), a widely used herbicide, we estimate maximum degradation to have reached 96 ± 3% two months after first application. Maximum shifts in nitrogen isotope signatures were small and inverse (Δδ15N=-1.3±0.6‰) indicating potential secondary isotope effects during degradation. In combination with a mass balance approach including S-met main degradation products, total catchment non-destructive dissipation was estimated to have reached 8 ± 7% of the applied product. Our results show that CSIA can be applied to evaluate natural attenuation of pesticides at catchment scale. By providing a more detailed account of pesticide dissipation and persistence under field conditions we anticipate the contribution of pesticide CSIA to the improvement of regulatory and monitoring strategies.


Assuntos
Acetamidas/química , Isótopos de Carbono/análise , Poluentes Ambientais/química , Herbicidas/química , Isótopos de Nitrogênio/análise , Abastecimento de Água
16.
Arch Environ Contam Toxicol ; 72(1): 1-10, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27822581

RESUMO

Periphyton relevance for methylmercury (MeHg) production and accumulation are now well known in aquatic ecosystems. Sulfate-reducing bacteria and other microbial groups were identified as the main MeHg producers, but the effect of periphyton algae on the accumulation and transfer of MeHg to the food web remains little studied. Here we investigated the role of specific groups of algae on MeHg accumulation in the periphyton of Schoenoplectus californicus ssp. (Totora) and Myriophyllum sp. in Uru Uru, a tropical high-altitude Bolivian lake with substantial fishing and mining activities accruing around it. MeHg concentrations were most strongly related to the cell abundance of the Chlorophyte genus Oedogonium (r 2 = 0.783, p = 0.0126) and to no other specific genus despite the presence of other 34 genera identified. MeHg was also related to total chlorophyll-a (total algae) (r 2 = 0.675, p = 0.0459), but relations were more significant with chlorophyte cell numbers, chlorophyll-b (chlorophytes), and chlorophyll-c (diatoms and dinoflagellates) (r 2 = 0.72, p = 0.028, r 2 = 0.744, p = 0.0214, and r 2 = 0.766, p = 0.0161 respectively). However, Oedogonium explains most variability of chlorophytes and chlorophyll-c (r 2 = 0.856, p = < 0.001 and r 2 = 0.619, p = 0.002, respectively), suggesting it is the most influential group for MeHg accumulation and periphyton algae composition at this particular location and given time.


Assuntos
Magnoliopsida/fisiologia , Compostos de Metilmercúrio/metabolismo , Microalgas/química , Poluentes Químicos da Água/metabolismo , Altitude , Biota , Bolívia , Clorófitas/química , Clorófitas/classificação , Cyperaceae/fisiologia , Diatomáceas/química , Diatomáceas/classificação , Dinoflagellida/química , Dinoflagellida/classificação , Monitoramento Ambiental , Lagos , Microalgas/classificação
17.
J Hazard Mater ; 317: 552-562, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27344256

RESUMO

Refined exposure assessments were realized for children, 7-9yrs, in the mining/smelting city of Oruro, Bolivia. Aerosols (PM>2.5, PM1-2.5, PM0.4-1 and PM0.5) and dust (separated in different particle size fractions: 2000-200µm, 200-50µm, 50-20µm, 20-2µm and <2µm) were sampled on football fields highly frequented by children in both the mining and smelting areas. Trace element concentrations (Ag, As, Cd, Cu, Pb, Sb, Sn and Zn) in each size fraction of dust and aerosols, lung bioaccessibility of metals in aerosols, and gastric bioaccessibility of metals in dust were measured. Exposure was assessed considering actual external exposure (i.e. exposure pathways: metals inhaled and ingested) and simulated internal exposure (i.e., complex estimation using gastric and lung bioaccessibility, deposition and clearance of particles in lungs). Significant differences between external and simulated internal exposure were attributed to dissemblances in gastric and lung bioaccessibilities, as well as metal distribution within particle size range, revealing the importance of both parameters in exposure assessment.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Exposição por Inalação/análise , Metais Pesados/análise , Aerossóis , Poluentes Atmosféricos/farmacocinética , Disponibilidade Biológica , Bolívia , Criança , Humanos , Metais Pesados/farmacocinética , Mineração , Modelos Biológicos , Tamanho da Partícula
18.
Metallomics ; 8(2): 170-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26680232

RESUMO

In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.


Assuntos
Beluga/metabolismo , Caniformia/metabolismo , Isótopos de Mercúrio , Compostos de Metilmercúrio/metabolismo , Animais , Cadeia Alimentar , Cromatografia Gasosa-Espectrometria de Massas , Isótopos de Mercúrio/análise , Isótopos de Mercúrio/química , Isótopos de Mercúrio/metabolismo , Compostos de Metilmercúrio/análise , Distribuição Tecidual
19.
Anal Chem ; 87(23): 11732-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26511394

RESUMO

A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰).


Assuntos
Compostos de Metilmercúrio/análise , Atum , Animais , Isótopos de Carbono/análise , Análise de Alimentos , Cromatografia Gasosa-Espectrometria de Massas
20.
Environ Sci Technol ; 49(15): 8977-85, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26132925

RESUMO

Decadal time trends of mercury (Hg) concentrations in Arctic biota suggest that anthropogenic Hg is not the single dominant factor modulating Hg exposure to Arctic wildlife. Here, we present Hg speciation (monomethyl-Hg) and stable isotopic composition (C, N, Hg) of 53 Alaskan ringed seal liver samples covering a period of 14 years (1988-2002). In vivo metabolic effects and foraging ecology explain most of the observed 1.6 ‰ variation in liver δ(202)Hg, but not Δ(199)Hg. Ringed seal habitat use and migration were the most likely factors explaining Δ(199)Hg variations. Average Δ(199)Hg in ringed seal liver samples from Barrow increased significantly from +0.38 ± 0.08‰ (±SE, n = 5) in 1988 to +0.59 ± 0.07‰ (±SE, n = 7) in 2002 (4.1 ± 1.2% per year, p < 0.001). Δ(199)Hg in marine biological tissues is thought to reflect marine Hg photochemistry before biouptake and bioaccumulation. A spatiotemporal analysis of sea ice cover that accounts for the habitat of ringed seals suggests that the observed increase in Δ(199)Hg may have been caused by the progressive summer sea ice disappearance between 1988 and 2002. While changes in seal liver Δ(199)Hg values suggests a mild sea ice control on marine MMHg breakdown, the effect is not large enough to induce measurable HgT changes in biota. This suggests that Hg trends in biota in the context of a warming Arctic are likely controlled by other processes.


Assuntos
Monitoramento Ambiental , Camada de Gelo , Marcação por Isótopo , Focas Verdadeiras/metabolismo , Alaska , Animais , Regiões Árticas , Ecossistema , Geografia , Fígado/metabolismo , Isótopos de Mercúrio/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA