Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Radiographics ; 42(2): 487-505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35179984

RESUMO

Lymphatic abnormalities encompass a wide range of disorders spanning solitary common cystic lymphatic malformations (LMs) to entities involving multiple organ systems such as lymphangioleiomyomatosis. Many of these disorders are rare, yet some, such as secondary lymphedema from the treatment of malignancy (radiation therapy and/or lymph node dissection), affect millions of patients worldwide. Owing to complex and variable anatomy, the lymphatics are not as well understood as other organ systems. Further complicating this is the variability in the description of lymphatic disease processes and their nomenclature in the medical literature. In recent years, medical imaging has begun to facilitate a deeper understanding of the physiology and pathologic processes that involve the lymphatic system. Radiology is playing an important and growing role in the diagnosis and treatment of many lymphatic conditions. The authors describe both normal and common variant lymphatic anatomy. Various imaging modalities including nuclear medicine lymphoscintigraphy, conventional lymphangiography, and MR lymphangiography used in the diagnosis and treatment of lymphatic disorders are highlighted. The authors discuss imaging many of the common and uncommon lymphatic disorders, including primary LMs described by the International Society for the Study of Vascular Anomalies 2018 classification system (microcystic, mixed, and macrocystic LMs; primary lymphedema). Secondary central lymphatic disorders are also detailed, including secondary lymphedema and chylous leaks, as well as lymphatic disorders not otherwise easily classified. The authors aim to provide the reader with an overview of the anatomy, pathology, imaging findings, and treatment of a wide variety of lymphatic conditions. ©RSNA, 2022.


Assuntos
Doenças Linfáticas , Linfedema , Humanos , Doenças Linfáticas/patologia , Sistema Linfático/diagnóstico por imagem , Sistema Linfático/patologia , Linfedema/diagnóstico por imagem , Linfografia/métodos , Imageamento por Ressonância Magnética/métodos
2.
Radiographics ; 41(6): 1657-1675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34559586

RESUMO

Liver lesions have different enhancement patterns at dynamic contrast-enhanced imaging. The Liver Imaging Reporting and Data System (LI-RADS) applies the enhancement kinetic of liver observations in its algorithms for imaging-based diagnosis of hepatocellular carcinoma (HCC) in at-risk populations. Therefore, careful analysis of the spatial and temporal features of these enhancement patterns is necessary to increase the accuracy of liver mass characterization. The authors focus on enhancement patterns that are found at or around the margins of liver observations-many of which are recognized and defined by LI-RADS, such as targetoid appearance, rim arterial phase hyperenhancement, peripheral washout, peripheral discontinuous nodular enhancement, enhancing capsule appearance, nonenhancing capsule appearance, corona enhancement, and periobservational arterioportal shunts-as well as peripheral and periobservational enhancement in the setting of posttreatment changes. Many of these are considered major or ancillary features of HCC, ancillary features of malignancy in general, features of non-HCC malignancy, features associated with benign entities, or features related to treatment response. Distinction between these different patterns of enhancement can help with achieving a more specific diagnosis of HCC and better assessment of response to local-regional therapy. ©RSNA, 2021.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Hemodinâmica , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Sensibilidade e Especificidade
3.
Abdom Radiol (NY) ; 46(12): 5462-5465, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34482413

RESUMO

The authors provide a commentary on the current status of the Abdominal Radiology Fellowship recruitment process, which is not presently governed by a formal Match. Abdominal Radiology is the largest radiology subspecialty fellowship that remains outside of the Match. The Society of Abdominal Radiology convened a task force in 2019 to assess stakeholder viewpoints on a Match and found that the community was divided. Radiology departments and Abdominal Radiology fellowship program directors have voluntarily complied with a series of guidelines laid out by the Society of Chairs in Academic Radiology Departments during the two most recent recruiting cycles, but challenges in the process persist. Stakeholders report improved organization and fairness as a result of these procedural changes, and the authors suggest that Abdominal Radiology may continue to consider a formal fellowship Match in coming years.


Assuntos
Internato e Residência , Radiologia , Bolsas de Estudo , Humanos , Seleção de Pessoal , Radiologia/educação , Inquéritos e Questionários , Estados Unidos
4.
AJR Am J Roentgenol ; 217(3): 644-650, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34259543

RESUMO

OBJECTIVE. The purpose of the study is to evaluate the outcomes of ultrasound (US) LI-RADS category US-3 observations detected at US performed for hepatocellular carcinoma (HCC) screening and surveillance on the basis of subsequently performed multi-phase MRI or CT or histopathology. MATERIALS AND METHODS. In this retrospective analysis, 267 patients at high risk for HCC (161 men and 106 women; mean [± SD] age, 58.6 ± 12.2 years) underwent screening liver US between January 2017 and June 2019 and were assigned US-3 observations on a prospective clinical basis using the US LI-RADS algorithm. The results of follow-up imaging studies and/or histopathology were analyzed. RESULTS. Visualization scores assigned at US were A (40.8% [109/267]), B (52.8% [141/267]), and C (6.4% [17/267]). Reasons for US-3 observations included a measurable mass of 1 cm or larger (88.8% [237/267]; mean size, 1.8 ± 1.0 cm; range, 1.0-6.9 cm), an area of parenchymal distortion of 1 cm or greater (7.9% [21/267]; mean size, 1.8 ± 0.9 cm; range, 1.0-4.0 cm), or a new venous thrombus (3.4% [9/267]). Confirmatory testing with multiphase contrast-enhanced MRI or CT or with histopathology was available for 81.6% (218/267) of patients. Causes of US-3 observations included no abnormality at MRI or CT (41.3% [90/218]), a benign lesion (32.6% [71/218]), a LI-RADS category 3 (LR-3) observation at MRI or CT (5.5% [12/218]), a LI-RADS category 4 or 5 (LR-4 or LR-5) observation at MRI or CT or identification of HCC at histopathology (18.8% [41/218]), and an LR-M (denoting probably or definitely malignant but without specific features for HCC) observation at MRI or CT or other malignancy at histopathology (1.8% [4/218]). The PPV of a US-3 observation for probable or definite HCC was 18.8%, and for any malignancy it was 20.6%. CONCLUSION. In the HCC screening population, approximately one in five US-3 observations represents probable or definite HCC at multiphase MRI or CT or HCC at histopathology. These findings support current US LI-RADS guidelines to pursue further evaluation with multiphase cross-sectional imaging for US-3 observations.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Sistemas de Informação em Radiologia/estatística & dados numéricos , Ultrassonografia/métodos , Feminino , Humanos , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco
5.
Abdom Radiol (NY) ; 46(8): 3625-3633, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33950406

RESUMO

Systemic therapy for the treatment of hepatocellular carcinoma (HCC) has rapidly evolved over the last 4 years; eight new drug regimens have gained Food and Drug Administration approval for treatment of advanced HCC since 2017. As several lines of therapy are now available for the treatment of HCC, accurate CT and MRI treatment response assessment is important for informing optimal management of affected patients. This article will review the systemic therapies currently approved for the treatment of HCC, focusing on items most pertinent to radiologists. Treatment response assessment of patients with HCC undergoing systemic therapy differs from treatment response assessment of patients receiving locoregional therapies, and principle differences will be highlighted. Finally, this review will provide a framework for the interpretation of CT and MRI examinations of patients with HCC being treated with systemic therapy and will explore the relevant scientific data currently available.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Protocolos Clínicos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Imageamento por Ressonância Magnética
6.
Abdom Radiol (NY) ; 46(8): 3615-3624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963419

RESUMO

Stereotactic body radiation therapy (SBRT) is an emerging locoregional treatment (LRT) modality used in the management of patients with hepatocellular carcinoma (HCC). The decision to treat HCC with LRT is evaluated in a multidisciplinary setting, and the specific LRT chosen depends on the treatment intent, such as bridge-to-transplant, down-staging to transplant, definitive/curative treatment, and/or palliation, as well as underlying patient clinical factors. Accurate assessment of treatment response is necessary in order to guide clinical management in these patients. Patients who undergo LRT need continuous imaging evaluation to assess treatment response and to evaluate for recurrence. Thus, an accurate understanding of expected post-SBRT imaging findings is critical to avoid misinterpreting normal post-treatment changes as local progression or viable tumor. SBRT-treated HCC demonstrates unique imaging findings that differ from HCC treated with other forms of LRT. In particular, SBRT-treated HCC can demonstrate persistent APHE and washout on short-term follow-up imaging. This brief review summarizes current evidence for the use of SBRT for HCC, including patient population, SBRT technique and procedure, tumor response assessment on contrast-enhanced cross-sectional imaging with expected findings, and pitfalls in treatment response evaluation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Recidiva Local de Neoplasia , Estudos Retrospectivos , Resultado do Tratamento
7.
AJR Am J Roentgenol ; 216(2): 295-304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33052720

RESUMO

The Liver Imaging Reporting and Data System (LI-RADS) is a comprehensive system for standardizing the terminology, interpretation, reporting, and data collection of liver imaging. Over the past 10 years, LI-RADS has undergone a substantial expansion in scope, building on and refining its initial CT and MRI algorithm for hepatocellular carcinoma (HCC) diagnosis and developing three new algorithms: ultrasound (US) LI-RADS for HCC screening and surveillance, contrast-enhanced US (CEUS) LI-RADS for HCC diagnosis, and LI-RADS CT/MRI treatment response. As of 2018, LI-RADS and the American Association for the Study of Liver Diseases (AASLD) guidance share LR-5 (definitely HCC) criteria for the image-based diagnosis of HCC, and LI-RADS diagnostic criteria and management recommendations were integrated into the AALSD clinical practice guidance for HCC diagnosis, staging, and management. LI-RADS is updated in response to new knowledge, technology, and user feedback every 3-5 years. This article details the origins and growth of LI-RADS, reviews its current state, and articulates its short- and long-term objectives.


Assuntos
Algoritmos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Sistemas de Informação em Radiologia , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
8.
Radiol Imaging Cancer ; 2(6): e190086, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33778746

RESUMO

Purpose: To examine radiologic-histopathologic correlation and the diagnostic performance of transvaginal US prior to risk-reducing salpingo-oophorectomy (RRSO) in women at high risk for tubo-ovarian carcinoma (TOC). Materials and Methods: This retrospective study included 147 women (mean age, 49 years; age range, 28-75 years) at high risk for TOC who underwent transvaginal US within 6 months of planned RRSO between May 1, 2007, and March 14, 2018. Histopathologic results were reviewed. Fellowship-trained abdominal radiologists reinterpreted transvaginal US findings by using standardized descriptors. Descriptive statistical analysis and multiple logistic regression were performed. Results: Of the 147 women, 136 had mutations in BRCA1, BRCA2, Lynch syndrome, BRIP1, and RAD51D genes, and 11 had a family history of TOC. Histopathologic reports showed 130 (88.4%) benign nonneoplastic results, 10 (6.8%) benign neoplasms, five (3.4%) malignant neoplasms, and two (1.4%) isolated p53 signature lesions. Transvaginal US results showed benign findings in 95 (64.6%) women and abnormal findings in 11 (7.5%) women; one or both ovaries were not visualized in 41 (27.9%) women. Hydrosalpinx was absent in all TOC and p53 signature lesions at transvaginal US. Transvaginal US had 20% sensitivity (one of five), 93% specificity (132 of 142), 9% positive predictive value (one of 11), and 97% negative predictive value (132 of 136) for TOC. Cancer was detected in one of five women at transvaginal US, and three of five false-negative lesions were microscopic or very small. Conclusion: Preoperative transvaginal US had low sensitivity for detecting TOC in women at high risk for TOC. Clinically relevant precursors and early cancers were too small to be detected.Keywords: Genital/Reproductive, UltrasoundSupplemental material is available for this article.© RSNA, 2020.


Assuntos
Neoplasias Ovarianas , Salpingo-Ooforectomia , Ultrassonografia , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/genética , Estudos Retrospectivos
9.
Radiol Imaging Cancer ; 2(1): e190024, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-33778692

RESUMO

Nearly 80% of cirrhotic patients diagnosed with hepatocellular carcinoma (HCC) are not eligible for surgical resection and instead undergo local-regional treatment. After therapy for HCC, patients undergo imaging surveillance to assess treatment efficacy and identify potential sites of progressive tumor elsewhere within the liver. Accurate interpretation of posttreatment imaging is essential for guiding further management decisions, and radiologists must understand expected treatment-specific imaging findings for each of the local-regional therapies. Of interest, expected imaging findings seen after radiation-based therapies (transarterial radioembolization and stereotactic body radiation therapy) are different than those seen after thermal ablation and transarterial chemoembolization. Given differences in expected posttreatment imaging findings, the current radiologic treatment response assessment algorithms used for HCC (modified Response Evaluation Criteria in Solid Tumors classification, European Association for the Study of Liver Diseases criteria, and Liver Imaging and Reporting Data System Treatment Response Algorithm) must be applied cautiously for radiation-based therapies in which persistent arterial phase hyperenhancement in the early posttreatment period is common and expected. This article will review the concept of tumor response assessment for HCC, the forms of local-regional therapy for HCC, and the expected posttreatment findings for each form of therapy. Keywords: Abdomen/GI, Liver, MR-Imaging, Treatment Effects, Tumor Response © RSNA, 2020.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Imageamento por Ressonância Magnética , Radiocirurgia
11.
J Hepatocell Carcinoma ; 6: 49-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788336

RESUMO

The Liver Imaging Reporting and Data System (LI-RADS®) is a comprehensive system for standardizing the terminology, technique, interpretation, reporting, and data collection of liver observations in individuals at high risk for hepatocellular carcinoma (HCC). LI-RADS is supported and endorsed by the American College of Radiology (ACR). Upon its initial release in 2011, LI-RADS applied only to liver observations identified at CT or MRI. It has since been refined and expanded over multiple updates to now also address ultrasound-based surveillance, contrast-enhanced ultrasound for HCC diagnosis, and CT/MRI for assessing treatment response after locoregional therapy. The LI-RADS 2018 version was integrated into the HCC diagnosis, staging, and management practice guidance of the American Association for the Study of Liver Diseases (AASLD). This article reviews the major LI-RADS updates since its 2011 inception and provides an overview of the currently published LI-RADS algorithms.

12.
J Ultrasound Med ; 38(1): 149-155, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29732594

RESUMO

OBJECTIVES: This study evaluated the diagnostic performance of transvaginal ultrasound (TVUS) shear wave elastography (SWE) for evaluating uterine adenomyosis and leiomyomas. METHODS: Institutional Review Board approval was obtained for prospective enrollment of 34 premenopausal women with pelvic pain and/or bleeding between January 2015 and June 2016. TVUS SWE was performed with regions of interest in multiple uterine segments and shear wave velocities(SWVs) were recorded. Reference pelvic magnetic resonance examinations were performed and reviewed without access to the ultrasound results. RESULTS: Continuous variables were analyzed using means, t tests, and analysis of variance. Magnetic resonance imaging revealed adenomyosis in 6 women (12 uterine segments) and leiomyomas in 12 women (28 segments). On a per-patient basis, mean SWV in 16 women with no adenomyosis or leiomyoma was 4.3 ± 1.7 m/s, compared with 5.7 ± 2.3 m/s in 18 women with a magnetic resonance diagnosis of myometrial pathology (P < .0002; 95% confidence interval, -2.2, -0.6). On a per-segment basis, SWV in normal myometrium was 4.8 ± 1.9 m/s, compared with 4.9 ± 2.5 m/s in adenomyosis and 5.6 ± 2.5 m/s in leiomyoma (P = .34 by one-way analysis of variance). In pairwise comparison, SWV for adenomyosis and leiomyoma did not differ significantly (P = .40). CONCLUSIONS: TVUS SWE did not distinguish adenomyosis from leiomyoma. However, our pilot study demonstrated that myometrial SWVs were higher in uteri with adenomyosis and leiomyomas than in uteri with myometrium with no abnormalities suggesting a potential role for SWE in treatment response assessment.


Assuntos
Adenomiose/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Leiomioma/diagnóstico por imagem , Neoplasias Uterinas/diagnóstico por imagem , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Reprodutibilidade dos Testes , Útero/diagnóstico por imagem , Vagina/diagnóstico por imagem , Adulto Jovem
13.
Abdom Radiol (NY) ; 43(10): 2625-2642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30155697

RESUMO

The Liver Imaging and Reporting Data System (LI-RADS) is a comprehensive system for standardizing the terminology, technique, interpretation, reporting, and data collection of liver imaging with the overarching goal of improving communication, clinical care, education, and research relating to patients at risk for or diagnosed with hepatocellular carcinoma (HCC). In 2018, the American Association for the Study of Liver Diseases (AASLD) integrated LI-RADS into its clinical practice guidance for the imaging-based diagnosis of HCC. The harmonization between the AASLD and LI-RADS diagnostic imaging criteria required minor modifications to the recently released LI-RADS v2017 guidelines, necessitating a LI-RADS v2018 update. This article provides an overview of the key changes included in LI-RADS v2018 as well as a look at the LI-RADS v2018 diagnostic algorithm and criteria, technical recommendations, and management suggestions. Substantive changes in LI-RADS v2018 are the removal of the requirement for visibility on antecedent surveillance ultrasound for LI-RADS 5 (LR-5) categorization of 10-19 mm observations with nonrim arterial phase hyper-enhancement and nonperipheral "washout", and adoption of the Organ Procurement and Transplantation Network definition of threshold growth (≥ 50% size increase of a mass in ≤ 6 months). Nomenclatural changes in LI-RADS v2018 are the removal of -us and -g as LR-5 qualifiers.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Tomografia Computadorizada por Raios X/normas , Algoritmos , Diagnóstico Diferencial , Humanos , Sociedades Médicas , Estados Unidos
14.
J Am Coll Radiol ; 15(9): 1259-1265, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29866627

RESUMO

PURPOSE: To explore the use of nonradiologists as a method to efficiently reduce bias in the assessment of radiologist performance using a hepatobiliary tumor board as a case study. MATERIALS AND METHODS: Institutional review board approval was obtained for this HIPAA-compliant prospective quality assurance (QA) effort. Consecutive patients with CT or MR imaging reviewed at one hepatobiliary tumor board between February 2016 and October 2016 (n = 265) were included. All presentations were assigned prospective anonymous QA scores by an experienced nonradiologist hepatobiliary provider based on contemporaneous comparison of the imaging interpretation at a tumor board and the original interpretation(s): concordant, minor discordance, major discordance. Major discordance was defined as a discrepancy that may affect clinical management. Minor discordance was defined as a discrepancy unlikely to affect clinical management. All discordances and predicted management changes were retrospectively confirmed by the liver tumor program medical director. Logistic regression analyses were performed to determine what factors best predict discordant reporting. RESULTS: Approximately one-third (30% [79 of 265]) of reports were assigned a discordance, including 51 (19%) minor and 28 (11%) major discordances. The most common related to mass size (41% [32 of 79]), tumor stage and extent (24% [19 of 79]), and assigned LI-RADS v2014 score (22% [17 of 79]). One radiologist had 11.8-fold greater odds of discordance (P = .002). Nine other radiologists were similar (P = .10-.99). Radiologists presenting their own studies had 4.5-fold less odds of discordance (P = .006). CONCLUSIONS: QA conducted in line with tumor board workflow can enable efficient assessment of radiologist performance. Discordant interpretations are commonly (30%) reported by nonradiologist providers.


Assuntos
Neoplasias do Sistema Biliar/diagnóstico por imagem , Competência Clínica , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Garantia da Qualidade dos Cuidados de Saúde , Radiologistas/normas , Tomografia Computadorizada por Raios X/normas , Neoplasias do Sistema Biliar/patologia , Humanos , Neoplasias Hepáticas/patologia , Estadiamento de Neoplasias , Estudos Prospectivos
15.
Radiology ; 288(1): 158-163, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29664338

RESUMO

Purpose To assess the impact of clinical history on the maximum Prostate Imaging Recording and Data System (PI-RADS) version 2 (v2) score assigned to multiparametric magnetic resonance (MR) imaging of the prostate. Materials and Methods This retrospective cohort study included 120 consecutively selected multiparametric prostate MR imaging studies performed between November 1, 2016, and December 31, 2016. Sham clinical data in four domains (digital rectal examination, prostate-specific antigen level, plan for biopsy, prior prostate cancer history) were randomly assigned to each case by using a balanced orthogonal design. Six fellowship-trained abdominal radiologists independently reviewed the sham data, actual patient age, and each examination while they were blinded to interreader scoring, true clinical data, and histologic findings. Readers were told the constant sham histories were true, believed the study to be primarily investigating interrater agreement, and were asked to assign a maximum PI-RADS v2 score to each case. Linear regression was performed to assess the association between clinical variables and maximum PI-RADS v2 score designation. Intraclass correlation coefficients (ICCs) were obtained to compare interreader scoring. Results Clinical information had no significant effect on maximum PI-RADS v2 scoring for any of the six readers (P = .09-.99, 42 reader-variable pairs). Distributions of maximum PI-RADS v2 scores in the research context were similar to the distribution of the scores assigned clinically and had fair-to-excellent pairwise interrater agreement (ICC range: 0.53-0.76). Overall interrater agreement was good (ICC: 0.64; 95% confidence interval: 0.57, 0.71). Conclusion Clinical history does not appear to be a substantial bias in maximum PI-RADS v2 score assignment. This is potentially important for clinical nomograms that plan to incorporate PI-RADS v2 score and clinical data into their algorithms (ie, PI-RADS v2 scoring is not confounded by clinical data).


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Sistemas de Informação em Radiologia/estatística & dados numéricos , Idoso , Biópsia , Estudos de Coortes , Exame Retal Digital/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Próstata/patologia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Estudos Retrospectivos
16.
Magn Reson Imaging Clin N Am ; 25(3): 521-543, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28668158

RESUMO

Incidentally detected adnexal masses are common, and the overwhelming majority of them are benign. As many of these adnexal masses are considered indeterminate at CT or US, a large number of benign oophorectomies occur. Of the malignant adnexal masses, high-grade primary ovarian neoplasms with fast doubling times and early dissemination are the most common. Due to their aggressive behavior, diagnosis of malignancy by interval growth on surveillance imaging represents an undesirable option. Immediate MR characterization allows for a decreased rate of benign oophorectomies and expedited triage of patients to definitive treatment when malignancy is suspected.


Assuntos
Doenças dos Anexos/diagnóstico por imagem , Achados Incidentais , Imageamento por Ressonância Magnética/métodos , Neoplasias Uterinas/diagnóstico por imagem , Anexos Uterinos/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos
17.
Radiol Clin North Am ; 55(2): 209-224, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28126212

RESUMO

Imaging plays an important role in the diagnosis of urolithiasis as well as its pre-treatment planning and post-treatment follow-up. Proper imaging technique is essential to provide appropriate clinical care to affected patients. This article reviews the clinically relevant imaging findings most likely to influence management decisions.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Sistema Urinário/diagnóstico por imagem , Urolitíase/diagnóstico por imagem , Humanos
19.
Abdom Radiol (NY) ; 41(8): 1632-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27039194

RESUMO

Epinephrine is the most important treatment for severe allergic-like contrast reactions. The signs and symptoms of a severe reaction and the dose and methods of epinephrine administration are important for all radiologists to master. In this review article, we review the epidemiology of severe allergic-like contrast reactions, their common clinical manifestations, and their appropriate treatment, with a focus on correct epinephrine administration. We also discuss systematic limitations in the training of current and future radiologists, and recommend strategies for improvement.


Assuntos
Agonistas alfa-Adrenérgicos/uso terapêutico , Meios de Contraste/efeitos adversos , Hipersensibilidade a Drogas/tratamento farmacológico , Hipersensibilidade a Drogas/epidemiologia , Epinefrina/uso terapêutico , Agonistas alfa-Adrenérgicos/administração & dosagem , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Hipersensibilidade a Drogas/diagnóstico , Epinefrina/administração & dosagem , Humanos , Fatores de Risco
20.
Acad Radiol ; 23(5): 569-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26916251

RESUMO

RATIONALE AND OBJECTIVES: To compare differences in diffusion tensor imaging (DTI) and dynamic susceptibility-weighted contrast-enhanced (DSC) magnetic resonance (MR) perfusion imaging characteristics of recurrent neoplasm and radiation necrosis in patients with brain tumors previously treated with radiotherapy with or without surgery and chemotherapy. MATERIALS AND METHODS: Patients with a history of brain neoplasm previously treated with radiotherapy with or without chemotherapy and surgery who developed a new enhancing lesion on posttreatment surveillance MRI were enrolled. DSC perfusion MRI and DTI were performed. Region of interest cursors were manually drawn in the contrast-enhancing lesions, in the perilesional white matter edema, and in the contralateral normal-appearing frontal lobe white matter. DTI and DSC perfusion MR indices were compared in recurrent tumor versus radiation necrosis. RESULTS: Twenty-two patients with 24 lesions were included. Sixteen (67%) lesions were placed into the recurrent neoplasm group and eight (33%) lesions were placed into the radiation necrosis group using biopsy results as the gold standard in all but three patients. Mean apparent diffusion coefficient values, mean parallel eigenvalues, and mean perpendicular eigenvalues in the contrast-enhancing lesion were significantly lower, and relative cerebral blood volume was significantly higher for the recurrent neoplasm group compared to the radiation necrosis group (P < 0.01, P = 0.03, P < 0.01, and P < 0.01, respectively). CONCLUSIONS: The combined assessment of DTI and DSC MR perfusion properties of new contrast-enhancing lesions is helpful in distinguishing recurrent neoplasm from radiation necrosis in patients with a history of brain neoplasm previously treated with radiotherapy with or without surgery and chemotherapy.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/efeitos da radiação , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Imagem de Perfusão/métodos , Lesões por Radiação/diagnóstico por imagem , Adolescente , Adulto , Idoso , Biópsia/métodos , Encéfalo/patologia , Neoplasias Encefálicas/terapia , Volume Sanguíneo Cerebral/fisiologia , Meios de Contraste , Diagnóstico Diferencial , Feminino , Seguimentos , Lobo Frontal/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Necrose , Terapia Neoadjuvante/métodos , Substância Branca/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA