Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139404

RESUMO

Heart failure (HF) presents a significant clinical challenge, with current treatments mainly easing symptoms without stopping disease progression. The targeting of calcium (Ca2+) regulation is emerging as a key area for innovative HF treatments that could significantly alter disease outcomes and enhance cardiac function. In this review, we aim to explore the implications of altered Ca2+ sensitivity, a key determinant of cardiac muscle force, in HF, including its roles during systole and diastole and its association with different HF types-HF with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). We further highlight the role of the two rate constants kon (Ca2+ binding to Troponin C) and koff (its dissociation) to fully comprehend how changes in Ca2+ sensitivity impact heart function. Additionally, we examine how increased Ca2+ sensitivity, while boosting systolic function, also presents diastolic risks, potentially leading to arrhythmias and sudden cardiac death. This suggests that strategies aimed at moderating myofilament Ca2+ sensitivity could revolutionize anti-arrhythmic approaches, reshaping the HF treatment landscape. In conclusion, we emphasize the need for precision in therapeutic approaches targeting Ca2+ sensitivity and call for comprehensive research into the complex interactions between Ca2+ regulation, myofilament sensitivity, and their clinical manifestations in HF.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/diagnóstico , Volume Sistólico/fisiologia , Cálcio , Causalidade , Cálcio da Dieta , Função Ventricular Esquerda/fisiologia
2.
Circ Heart Fail ; 16(3): e009871, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695183

RESUMO

BACKGROUND: The left and right ventricles of the human heart differ in embryology, shape, thickness, and function. Ventricular dyssynchrony often occurs in cases of heart failure. Our objectives were to assess whether differences in contractile properties exist between the left and right ventricles and to evaluate signs of left/right ventricular mechanical synchrony in isolated healthy and diseased human myocardium. METHODS: Myocardial left and right ventricular trabeculae were dissected from nonfailing and end-stage failing human hearts. Baseline contractile force and contraction/relaxation kinetics of the left ventricle were compared to those of the right ventricle in the nonfailing group (n=41) and in the failing group (n=29). Correlation analysis was performed to assess the mechanical synchrony between left and right ventricular myocardium isolated from the same heart, in nonfailing (n=41) and failing hearts (n=29). RESULTS: The failing right ventricular myocardium showed significantly higher developed force (Fdev; P=0.001; d=0.98), prolonged time to peak (P<0.001; d=1.14), and higher rate of force development (P=0.002; d=0.89) and force decline (P=0.003; d=0.82) compared to corresponding left ventricular myocardium. In healthy myocardium, a strong positive relationship was present between the left and right ventricles in time to peak (r=0.58, P<0.001) and maximal kinetic rate of contraction (r=0.63, P<0.001). These coefficients were much weaker, often nearly absent, in failing myocardium. CONCLUSIONS: At the level of isolated cardiac trabeculae, contractile performance, specifically of contractile kinetics, is correlated in the nonfailing myocardium between the left and right ventricles' but this correlation is significantly weaker, or even absent, in end-stage heart failure, suggesting an interventricular mechanical dyssynchrony.


Assuntos
Insuficiência Cardíaca , Ventrículos do Coração , Humanos , Contração Miocárdica , Miocárdio , Coração
4.
J Am Heart Assoc ; 11(13): e025405, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730642

RESUMO

Background Because body mass index (BMI) is generally used clinically to define obesity and to estimate body adiposity, BMI likely is positively correlated with epicardial adipose tissue (EAT) level. Based on echocardiography, previous outcomes on this matter have varied from almost absent to rather strong correlations between BMI and EAT. The purpose of our study was to unambiguously examine EAT content and determine if correlations exist between EAT content and BMI, cause of heart failure, or contractile force. Methods and Results We qualitatively scored 150 human hearts ex vivo on EAT distribution. From each heart, multiple photographs of the heart were taken, and both atrial and ventricular adipose tissue levels were semiquantitatively scored. Main findings include a generally higher EAT content on nonfailing hearts compared with end-stage failing hearts (atrial adipose tissue level 5.70±0.13 vs. 5.00±0.12, P<0.001; ventricular adipose tissue level 5.14±0.16 vs. 4.57±0.12, P=0.0048). The results also suggest that EAT quantity is not strongly correlated with BMI in nonfailing (atrial adipose tissue level r=0.069, ventricular adipose tissue level r=0.14) or failing (atrial adipose tissue level r=-0.022, ventricular adipose tissue level r=0.051) hearts. Atrial EAT is closely correlated with ventricular EAT in both nonfailing (r=0.92, P<0.001) and failing (r=0.87, P<0.001) hearts. Conclusions EAT volume appears to be inversely proportional to severity of or length of time with heart failure based on our findings. Based on a lack of correlation with BMI, it is incorrect to assume high EAT volume given high body fat percentage.


Assuntos
Insuficiência Cardíaca , Miocárdio , Tecido Adiposo/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Ventrículos do Coração , Humanos , Obesidade/complicações , Pericárdio
5.
PLoS One ; 17(4): e0265731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35404981

RESUMO

The relationship between hypothyroidism and the occurrence and progression of heart failure (HF) has had increased interest over the past years. The low T3 syndrome, a reduced T3 in the presence of normal thyroid stimulating hormone (TSH), and free T4 concentration, is a strong predictor of all-cause mortality in HF patients. Still, the impact of hypothyroidism on the contractile properties of failing human myocardium is unknown. Our study aimed to investigate that impact using ex-vivo assessment of force and kinetics of contraction/relaxation in left ventricular intact human myocardial muscle preparations. Trabeculae were dissected from non-failing (NF; n = 9), failing with no hypothyroidism (FNH; n = 9), and failing with hypothyroidism (FH; n = 9) hearts. Isolated muscle preparations were transferred into a custom-made setup where baseline conditions as well as the three main physiological modulators that regulate the contractile strength, length-dependent and frequency-dependent activation, as well as ß-adrenergic stimulation, were assessed under near-physiological conditions. Hypothyroidism did not show any additional significant impact on the contractile properties different from the recognized alterations usually detected in such parameters in any end-stage failing heart without thyroid dysfunction. Clinical information for FH patients in our study revealed they were all receiving levothyroxine. Absence of any difference between failing hearts with or without hypothyroidism, may possibly be due to the profound effects of the advanced stage of heart failure that concealed any changes between the groups. Still, we cannot exclude the possibility of differences that may have been present at earlier stages. The effects of THs supplementation such as levothyroxine on contractile force and kinetic parameters of failing human myocardium require further investigation to explore its full potential in improving cardiovascular performance and cardiovascular outcomes of HF associated with hypothyroidism.


Assuntos
Insuficiência Cardíaca , Hipotireoidismo , Cálcio/farmacologia , Humanos , Hipotireoidismo/complicações , Contração Miocárdica , Miocárdio , Tiroxina/farmacologia
6.
J Mol Cell Cardiol ; 156: 7-19, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33766524

RESUMO

BACKGROUND: Heart failure (HF) is associated with highly significant morbidity, mortality, and health care costs. Despite the significant advances in therapies and prevention, HF remains associated with poor clinical outcomes. Understanding the contractile force and kinetic changes at the level of cardiac muscle during end-stage HF in consideration of underlying etiology would be beneficial in developing targeted therapies that can help improve cardiac performance. OBJECTIVE: Investigate the impact of the primary etiology of HF (ischemic or non-ischemic) on left ventricular (LV) human myocardium force and kinetics of contraction and relaxation under near-physiological conditions. METHODS AND RESULTS: Contractile and kinetic parameters were assessed in LV intact trabeculae isolated from control non-failing (NF; n = 58) and end-stage failing ischemic (FI; n = 16) and non-ischemic (FNI; n = 38) human myocardium under baseline conditions, length-dependent activation, frequency-dependent activation, and response to the ß-adrenergic stimulation. At baseline, there were no significant differences in contractile force between the three groups; however, kinetics were impaired in failing myocardium with significant slowing down of relaxation kinetics in FNI compared to NF myocardium. Length-dependent activation was preserved and virtually identical in all groups. Frequency-dependent activation was clearly seen in NF myocardium (positive force frequency relationship [FFR]), while significantly impaired in both FI and FNI myocardium (negative FFR). Likewise, ß-adrenergic regulation of contraction was significantly impaired in both HF groups. CONCLUSIONS: End-stage failing myocardium exhibited impaired kinetics under baseline conditions as well as with the three contractile regulatory mechanisms. The pattern of these kinetic impairments in relation to NF myocardium was mainly impacted by etiology with a marked slowing down of kinetics in FNI myocardium. These findings suggest that not only force development, but also kinetics should be considered as a therapeutic target for improving cardiac performance and thus treatment of HF.


Assuntos
Suscetibilidade a Doenças , Insuficiência Cardíaca Diastólica/etiologia , Insuficiência Cardíaca Diastólica/fisiopatologia , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/metabolismo , Biomarcadores , Análise de Dados , Feminino , Insuficiência Cardíaca , Insuficiência Cardíaca Diastólica/diagnóstico , Insuficiência Cardíaca Diastólica/tratamento farmacológico , Testes de Função Cardíaca , Frequência Cardíaca , Humanos , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Cinética , Masculino , Contração Miocárdica , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA