RESUMO
Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.
Assuntos
Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , TransativadoresRESUMO
Ribosome biogenesis is an energetically costly process, and tight regulation is required for stoichiometric balance between components. This requires coordination of RNA polymerases I, II, and III. Lack of nutrients or the presence of stress leads to downregulation of ribosome biogenesis, a process for which mechanistic target of rapamycin complex I (mTORC1) is key. mTORC1 activity is communicated by means of specific transcription factors, and in yeast, which is a primary model system in which transcriptional coordination has been delineated, transcription factors involved in regulation of ribosomal protein genes include Fhl1p and its cofactors, Ifh1p and Crf1p. Ifh1p is an activator, whereas Crf1p has been implicated in maintaining the repressed state upon mTORC1 inhibition. Computational analyses of evolutionary relationships have indicated that Ifh1p and Crf1p descend from a common ancestor. Here, we discuss recent evidence, which suggests that Crf1p also functions as an activator. We propose a model that consolidates available experimental evidence, which posits that Crf1p functions as an alternate activator to prevent the stronger activator Ifh1p from re-binding gene promoters upon mTORC1 inhibition. The correlation between retention of Crf1p in related yeast strains and duplication of ribosomal protein genes suggests that this backup activation may be important to ensure gene expression when Ifh1p is limiting. With ribosome biogenesis as a hallmark of cell growth, failure to control assembly of ribosomal components leads to several human pathologies. A comprehensive understanding of mechanisms underlying this process is therefore of the essence.
RESUMO
Drug repurposing is an efficient alternative approach to counter the increasing drug-resistant pathogens to treat infectious diseases. FtsZ is an essential bacterial cytokinesis protein involved in the formation of cell-division complex and targeting FtsZ using FDA approved drugs is a promising strategy to identify and develop a new antibacterial drug. Using in silico pharmacophore-based screening of drug bank, molecular docking and molecular dynamics simulations, we identified six drugs inhibiting the function of stFtsZ from Salmonella Typhi. The selected drugs target stFtsZ at the hydrophobic cleft formed between the C-terminal domain and helix α7 with binding energy better than -8 kcal/mol. Out of these six drugs, benzethonium chloride showed promising results at 8 µM concentration where it inhibits stFtsZ GTPase activity by 80% and prevents polymerization. Benzethonium chloride also possesses an excellent antibacterial activity against the bacterial culture of Salmonella Typhi (ATCC 19430), Staphylococcus aureus (ATCC 43300) and Escherichia coli (ATCC 25922) with the MIC values of 8 µg/mL, 1 µg/mL and 12 µg/mL, respectively. Based on our current study, the scaffold of benzethonium chloride can be used for the development of broad-spectrum antibacterial agents against drug-resistant pathogens.