Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 21(4): 045703, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21715821

RESUMO

Within the recently proposed doped-carrier representation of the projected lattice electron operators we derive a full Ising version of the t-J model. This model possesses the global discrete Z(2) symmetry as a maximal spin symmetry of the Hamiltonian at any values of the coupling constants, t and J. In contrast, in the spin anisotropic limit of the t-J model, usually referred to as the t-J(z) model, the global SU(2) invariance is fully restored at J(z) = 0, so that only the spin-spin interaction has in this model the true Ising form. We discuss a relationship between these two models and the standard isotropic t-J model. We show that the low-energy quasiparticles in all three models share qualitatively similar properties at low doping and small values of J/t. The main advantage of the proposed Ising t-J model over the t-J(z) one is that the former allows for the unbiased Monte Carlo calculations on large clusters of up to 10(3) sites. Within this model we discuss in detail the destruction of the antiferromagnetic (AF) order by doping as well as the interplay between the AF order and hole mobility. We also discuss the effect of the exchange interaction and that of the next-nearest-neighbour hoppings on the destruction of the AF order at finite doping. We show that the short-range AF order is observed in a wide range of temperatures and dopings, much beyond the boundaries of the AF phase. We explicitly demonstrate that the local no-double-occupancy constraint plays the dominant role in destroying the magnetic order at finite doping. Finally, a role of inhomogeneities is discussed.

2.
Phys Rev Lett ; 101(6): 060404, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18764441

RESUMO

Regular pattern formation is ubiquitous in nature; it occurs in biological, physical, and materials science systems. Here we propose a set of experiments with ultracold atoms that show how to examine different types of pattern formation. In particular, we show how one can see the analog of labyrinthine patterns (so-called quantum emulsions) in mixtures of light and heavy atoms (that tend to phase separate) by tuning the trap potential and we show how complex geometrically ordered patterns emerge (when the mixtures do not phase separate), which could be employed for low-temperature thermometry. The complex physical mechanisms for the pattern formation at zero temperature are understood within a theoretical analysis called the local density approximation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA