Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1706: 464277, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37573756

RESUMO

Intermediate products such as oxygenated compounds may interfere with bioconversion kinetics of lignocellulosic biomass into bioethanol. This work presents a multidimensional approach, based on liquid chromatography (LC), trapped ion mobility spectrometry (TIMS), tandem high-resolution mass spectrometry (HRMS/MS), and multivariate analysis, for the identification of enzymatic reactivity descriptors in 22 industrial biomass samples, called hydrolysates. The first part of the study is dedicated to the improvement of the chemical diversity assessment of the hydrolysates through an original three-dimensional Van Krevelen diagram displaying the double bond equivalent (DBE) as third dimension. In a second part, the evaluation of data by multivariate data analysis allowed the discrimination of sample according to the biomass type and the level of enzymatic reactivity. In the last part, a potential descriptor of low enzymatic reactivity was selected and used in a case study. An in-depth structural analysis was performed on the feature annotated as carbohydrate derivative. Considering the intricate fragmentation spectrum exhibited by the selected feature, trapped ion mobility was employed to enhance separation prior to the HRMS/MS experiments. This final step improved data interpretation and increased the identification confidence level leading to the characterization of xylotriose, 3,5-dimethoxy-4-hydroxybenzaldehyde and 4-hydroxy-3-methoxy-cinnamaldehyde. This is the first study to present an untargeted multidimensional approach for the identification of enzymatic hydrolysis inhibitors in industrial hydrolysate samples.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Biomassa , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos
2.
J Chromatogr A ; 1636: 461716, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33316561

RESUMO

Lignocellulosic biomass is a promising resource of renewable energy. Its transformation to ethanol requires efficient pretreatment leading to complex liquid mixtures made of hundreds of oxygenated analytes. A large part of the released compounds belong to the carbohydrates family. To overcome the complexity of such samples, a comprehensive on-line two-dimensional reversed-phase liquid chromatography hyphenated to high-resolution mass spectrometry (RPLC × RPLC-HRMS) was dedicated to the separation of carbohydrates and more specifically oligomers coming from pretreated lignocellulosic biomass. The first part of this study consisted in the optimization of such hyphenation (i.e. selection of stationary phases, mobile phases, sampling time, etc.). Then, the analytical method was applied to an industrial aqueous biomass product coming from the sulfuric acid-based pretreatment of a wheat straw. Around 70 well-resolved chromatographic peaks corresponding to oligomers were obtained. Occupation of the separation space between each chromatographic dimension was estimated to 75%. In the last part of this study, the interest of ion mobility-mass spectrometry in addition to RPLC × RPLC was discussed. Some examples highlighted the additional separation that can bring ion mobility to RPLC × RPLC-IMS-HRMS method. Using this four-dimensional hyphenation method, each analyte was described by two retention times, the collisional cross section and the molecular formula allowing to reach a level of detail never seen for biomass sample compositions.


Assuntos
Carboidratos/análise , Lignina/química , Espectrometria de Massas/métodos , Biomassa , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Espectrometria de Mobilidade Iônica
3.
J Chromatogr A ; 1611: 460605, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31662186

RESUMO

The petroleum industry is increasingly concerned with the conversion of vacuum residues as a consequence of decreased conventional crude oil availability. The compositional analysis of heavy oil products has become a key step in conversion processes, but the complexity of these oil matrices tends to increase with their boiling point. In this study, comprehensive two-dimensional liquid chromatography (LCxLC) coupled to inductively coupled mass spectrometry (ICP-MS/MS) is considered with a view to meet new requirements and to bring additional information regarding the species present in these matrices. In search for a high degree of orthogonality, two separation techniques involving two different retention mechanisms were evaluated: Size Exclusion Chromatography (SEC) and Reverse Phase Liquid Chromatography (RPLC). In SEC, the analytes are separated according to their molecular weight while according to their hydrophobicity in RPLC. The separation power of both individual separation techniques was first evaluated. Off-line and on-line LCxLC were compared on the basis of an optimization approach. It is shown that off-line SECxRPLC can provide, for the same analysis time of 150 min, a higher peak capacity (2600 vs 1700) than on-line RPLCxSEC while a similar dilution factor (close to 30) but also requires far fewer fractions to be analyzed (12 vs 400). Asphaltenes which constitute the heaviest fraction of crude oils (obtained from petroleum industry) were analyzed by the developed off-line SECxRPLC method. The resulting 2D-contour plots show that co-elutions could be removed leading, for the first time, to new information on high molecular weight species containing sulfur and vanadium.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Níquel/análise , Petróleo/análise , Enxofre/análise , Espectrometria de Massas em Tandem/métodos , Vanádio/análise , Cromatografia em Gel , Cromatografia de Fase Reversa , Interações Hidrofóbicas e Hidrofílicas , Poliestirenos/química , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA