Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 627(8005): 778-782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538939

RESUMO

The accumulation of physical errors1-3 prevents the execution of large-scale algorithms in current quantum computers. Quantum error correction4 promises a solution by encoding k logical qubits onto a larger number n of physical qubits, such that the physical errors are suppressed enough to allow running a desired computation with tolerable fidelity. Quantum error correction becomes practically realizable once the physical error rate is below a threshold value that depends on the choice of quantum code, syndrome measurement circuit and decoding algorithm5. We present an end-to-end quantum error correction protocol that implements fault-tolerant memory on the basis of a family of low-density parity-check codes6. Our approach achieves an error threshold of 0.7% for the standard circuit-based noise model, on par with the surface code7-10 that for 20 years was the leading code in terms of error threshold. The syndrome measurement cycle for a length-n code in our family requires n ancillary qubits and a depth-8 circuit with CNOT gates, qubit initializations and measurements. The required qubit connectivity is a degree-6 graph composed of two edge-disjoint planar subgraphs. In particular, we show that 12 logical qubits can be preserved for nearly 1 million syndrome cycles using 288 physical qubits in total, assuming the physical error rate of 0.1%, whereas the surface code would require nearly 3,000 physical qubits to achieve said performance. Our findings bring demonstrations of a low-overhead fault-tolerant quantum memory within the reach of near-term quantum processors.

2.
Phys Rev Lett ; 129(23): 230501, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563200

RESUMO

We consider quantum circuits composed of single-qubit operations and global entangling gates generated by Ising-type Hamiltonians. It is shown that such circuits can implement a large class of unitary operators commonly used in quantum algorithms at a very low cost-using a constant or effectively constant number of global entangling gates. Specifically, we report constant-cost implementations of Clifford operations with and without ancillae, constant-cost implementation of the multiply-controlled gates with linearly many ancillae, and an O(log^{*}(n)) cost implementation of the n-controlled single-target gates using logarithmically many ancillae. This shows a significant asymptotic advantage of circuits enabled by the global entangling gates.

3.
Expert Rev Proteomics ; 18(1): 7-12, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653222

RESUMO

ABSTACTIntroduction: Metabolomics, one of the most high-promising technologies, is the most recently developed post-genomics discipline for developing new diagnostic tests for future implementation in medicine. More than 2,000 scientific papers, using mass spectrometry-based (MS-based) metabolomics analysis for human disease diagnostics, have been published during the past two decades, and almost every metabolomics study shows high diagnostic accuracy. However, despite the great results and promising perspectives, there are currently no diagnostic tests based on metabolomics that have been approved and introduced into clinics.Areas covered: In this report, the advantages and challenges of MS-based metabolomics are discussed with a focus on its developing role in diagnostics, and the current trends in implementing metabolomics diagnostics in the clinic.Expert opinion: In the development of new clinical diagnostics tests, MS-based metabolomics has potential as both a preliminary discovery base for routine testing and a multi-test prototype, which is hoped to be introduced into clinical practice in the near future. A laboratory-developed test (LDT) is one possible way that multi-testing could be developed.


Assuntos
Espectrometria de Massas , Metaboloma , Metabolômica , Patologia Molecular , Humanos
4.
Diagnostics (Basel) ; 10(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466249

RESUMO

Parkinson's disease is the second most frequent neurodegenerative disease, representing a significant medical and socio-economic problem. Modern medicine still has no answer to the question of why Parkinson's disease develops and whether it is possible to develop an effective system of prevention. Therefore, active work is currently underway to find ways to assess the risks of the disease, as well as a means to extend the life of patients and improve its quality. Modern studies aim to create a method of assessing the risk of occurrence of Parkinson's disease (PD), to search for the specific ways of correction of biochemical disorders occurring in the prodromal stage of Parkinson's disease, and to personalize approaches to antiparkinsonian pharmacotherapy. In this review, we summarized all available clinically approved tests and techniques for PD diagnostics. Then, we reviewed major improvements and recent advancements in genomics, transcriptomics, and proteomics studies and application of metabolomics in PD research, and discussed the major metabolomics findings for diagnostics and therapy of the disease.

5.
Trends Parasitol ; 36(4): 337-355, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32191849

RESUMO

Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.


Assuntos
Edição de RNA/fisiologia , RNA Mitocondrial/metabolismo , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , RNA Mitocondrial/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética
6.
Metabolites ; 9(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726782

RESUMO

The dried blood spot (DBS) sampling has a lot of advantages in comparison with the "standard" venous blood collecting, such as small collection volume, painless and easy sample collection with minimal training required, stable and transportable at ambient temperatures, etc. The aim of this study was to determine the comparability of four different types of DBS sampling (HemaSpot™-HF Blood Collection Device, Whatman® 903 Protein Saver Snap Apart Card, card ImmunoHealth™, and glass fiber strip ImmunoHealth™) for analysis of the global metabolites profile. All the samples were collected from the same person at the same time and stored at room temperature for four weeks in order to exclude all possible deviations deriving from biological variances and to evaluate sample storage stability. Metabolome profiling by direct injection of a deproteinized capillary blood DBS sample into an electrospray ion source of a hybrid quadrupole time-of-flight mass spectrometer was used. Differences in the metabolomics profile were found between the different DBS collection materials, especially for ImmunoHealth™ card and ImmunoHealth™ glass fiber strip. However, our results indicate that the analytical performance of all tested DBS sampling materials showed consistent results overall detected metabolites and no dramatic changes between them in the metabolic composition during the storage time.

7.
Pathogens ; 8(3)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323762

RESUMO

In the mitochondria of trypanosomes and related kinetoplastid protists, most mRNAs undergo a long and sophisticated maturation pathway before they can be productively translated by mitochondrial ribosomes. Some of the aspects of this pathway (identity of the promotors, transcription initiation, and termination signals) remain obscure, and some (post-transcriptional modification by U-insertion/deletion, RNA editing, 3'-end maturation) have been illuminated by research during the last decades. The RNA editing creates an open reading frame for a productive translation, but the fully edited mRNA often represents a minor fraction in the pool of pre-edited and partially edited precursors. Therefore, it has been expected that the final stages of the mRNA processing generate molecular hallmarks, which allow for the efficient and selective recognition of translation-competent templates. The general contours and several important details of this process have become known only recently and represent the subject of this review.

8.
PLoS Negl Trop Dis ; 13(7): e0007424, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344033

RESUMO

In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.


Assuntos
Biotecnologia/métodos , Leishmania/classificação , Proteínas Recombinantes/biossíntese , Animais , Glicosilação , Humanos , Leishmania/patogenicidade , Leishmaniose , Processamento de Proteína Pós-Traducional
9.
Parasitology ; 146(1): 1-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898792

RESUMO

Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Genoma de Protozoário , Filogenia , Trypanosomatina , Animais , Regulação da Expressão Gênica/genética , Humanos , Trypanosomatina/classificação , Trypanosomatina/genética , Trypanosomatina/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(38): 9456-9461, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30190433

RESUMO

With quantum computers of significant size now on the horizon, we should understand how to best exploit their initially limited abilities. To this end, we aim to identify a practical problem that is beyond the reach of current classical computers, but that requires the fewest resources for a quantum computer. We consider quantum simulation of spin systems, which could be applied to understand condensed matter phenomena. We synthesize explicit circuits for three leading quantum simulation algorithms, using diverse techniques to tighten error bounds and optimize circuit implementations. Quantum signal processing appears to be preferred among algorithms with rigorous performance guarantees, whereas higher-order product formulas prevail if empirical error estimates suffice. Our circuits are orders of magnitude smaller than those for the simplest classically infeasible instances of factoring and quantum chemistry, bringing practical quantum computation closer to reality.

11.
Trends Parasitol ; 34(6): 466-480, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29605546

RESUMO

Trypanosomes and leishmanias are widely known parasites of humans. However, they are just two out of several phylogenetic lineages that constitute the family Trypanosomatidae. Although dixeny - the ability to infect two hosts - is a derived trait of vertebrate-infecting parasites, the majority of trypanosomatids are monoxenous. Like their common ancestor, the monoxenous Trypanosomatidae are mostly parasites or commensals of insects. This review covers recent advances in the study of insect trypanosomatids, highlighting their diversity as well as genetic, morphological and biochemical complexity, which, until recently, was underappreciated. The investigation of insect trypanosomatids is providing an important foundation for understanding the origin and evolution of parasitism, including colonization of vertebrates and the appearance of human pathogens.


Assuntos
Evolução Biológica , Insetos/parasitologia , Trypanosomatina/classificação , Animais , Biodiversidade , Interações Hospedeiro-Parasita , Humanos , Trypanosomatina/genética , Trypanosomatina/fisiologia
12.
Proc Natl Acad Sci U S A ; 114(13): 3305-3310, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28325879

RESUMO

We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. RESEARCH: ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.

13.
BioData Min ; 10: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261328

RESUMO

BACKGROUND: In metabolomics, thousands of substances can be detected in a single assay. This capacity motivates the development of metabolomics testing, which is currently a very promising option for improving laboratory diagnostics. However, the simultaneous measurement of an enormous number of substances leads to metabolomics data often representing concentrations only in conditional units, while laboratory diagnostics generally require actual concentrations. To convert metabolomics data to actual concentrations, calibration curves need to be generated for each substance, and this process represents a significant challenge due to the number of substances that are present in the metabolomics data. To overcome this limitation, a label-free standardization algorithm for metabolomics data is required. RESULTS: It was discovered that blood plasma has a set of stable internal standards. The appropriate usage of these newly discovered internal standards provides a background for the label-free standardization of metabolomics data that underlies the SantaOmics (Standardization algorithm for nonlinearly transformed arrays in Omics) algorithm. In this study, using the knee point, it was shown that the metabolomics data can be converted by SantaOmics into a standardized scale that can substitute actual concentration measurements, thus making the metabolomics data directly comparable with each other as well as with reference data presented in the same scale. CONCLUSION: The developed algorithm sufficiently facilitates the usage of metabolomics data in laboratory diagnostics.

14.
Mitochondrion ; 34: 67-74, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28089944

RESUMO

Mitochondrial ribosomes evolved from prokaryotic ribosomes, with which they therefore share more common features than with their counterparts in the cytosol. Yet, mitochondrial ribosomes are highly diverse in structure and composition, having undergone considerable changes, including reduction of their RNA component and varying degree of acquisition of novel proteins in various phylogenetic lineages. Here, we present functional analysis of three putative mitochondrial ribosome-associated proteins (RSM22, mtYsxC and PNKD-like) in Trypanosoma brucei, originally identified by database mining. While in other systems the homologs of RSM22 are known as components of mitochondrial ribosomes, YsxC was linked with ribosomes only in bacteria. The PNKD-like protein shows similarity to a human protein, the defects of which cause PNKD (paroxysmal non-kinesigenic dyskinesia). Here we show that all three proteins are important for the growth of T. brucei. They play an important function in mitochondrial translation, as their ablation by RNAi rapidly and severely affected the de novo synthesis of mitochondrial proteins. Moreover, following the RNAi-mediated depletion of RSM22, structure of the small subunit of mitochondrial ribosome becomes severely compromised, suggesting a role of RSM22 in ribosomal assembly and/or stability.


Assuntos
Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Biologia Computacional , Inativação Gênica , Proteínas Mitocondriais/genética , Proteínas de Protozoários/genética , Interferência de RNA , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/genética
15.
Nat Commun ; 7: 13223, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752045

RESUMO

The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome-targeting antibiotics. Here, by direct electron-counting cryoEM, we have determined the structures of the Leishmania donovani and human ribosomes at 2.9 Å and 3.6 Å, respectively. Our structure of the leishmanial ribosome elucidates the organization of the six fragments of its large subunit rRNA (as opposed to a single 28S rRNA in most eukaryotes, including humans) and reveals atomic details of a unique 20 amino acid extension of the uL13 protein that pins down the ends of three of the rRNA fragments. The structure also fashions many large rRNA expansion segments. Direct comparison of our human and leishmanial ribosome structures at the decoding A-site sheds light on how the bacterial ribosome-targeting drug paromomycin selectively inhibits the eukaryotic L. donovani, but not human, ribosome.


Assuntos
Microscopia Crioeletrônica/métodos , Leishmania donovani/metabolismo , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Antibacterianos/farmacologia , Humanos , Conformação Molecular , Conformação de Ácido Nucleico , Paromomicina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribossomos/química , Ribossomos/metabolismo
16.
mBio ; 7(2): e01985, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980834

RESUMO

UNLABELLED: We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, "Candidatus Pandoraea novymonadis" sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. IMPORTANCE: The parasitic trypanosomatid protist Novymonas esmeraldas gen. nov., sp. nov. entered into endosymbiosis with the bacterium "Ca. Pandoraea novymonadis" sp. nov. This novel and rather unstable interaction shows several signs of relatively recent establishment, qualifying it as a potentially unique transient stage in the increasingly complex range of eukaryotic-prokaryotic relationships.


Assuntos
Burkholderiaceae/fisiologia , Simbiose , Trypanosomatina/microbiologia , Burkholderiaceae/classificação , Burkholderiaceae/citologia , Burkholderiaceae/isolamento & purificação , Equador , Filogenia , Trypanosomatina/classificação , Trypanosomatina/citologia , Trypanosomatina/genética
17.
Sci Rep ; 6: 23704, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27021793

RESUMO

Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.


Assuntos
Evolução Molecular , Genoma de Protozoário/genética , Leishmania/genética , Trypanosomatina/genética , Metabolismo Energético/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genes de Protozoários/genética , Leishmania/classificação , Leishmania/patogenicidade , Filogenia , Especificidade da Espécie , Trypanosomatina/classificação , Trypanosomatina/patogenicidade , Virulência/genética
18.
Mol Microbiol ; 99(6): 1043-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26713541

RESUMO

Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial-type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3' adenylation/uridylation factors. The A/U-tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U-tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U-tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U-tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome-associated PPRs may selectively activate mRNAs for translation.


Assuntos
Fatores Ativadores da Transcrição/genética , Mitocôndrias/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Poliadenilação , Biossíntese de Proteínas , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
19.
Trends Parasitol ; 31(10): 460-469, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26433249

RESUMO

While dixenous trypanosomatids represent one of the most dangerous pathogens for humans and domestic animals, their monoxenous relatives have frequently become model organisms for studies of diversity of parasitic protists and host-parasite associations. Yet, the classification of the family Trypanosomatidae is not finalized and often confusing. Here we attempt to make a blueprint for future studies in this field. We would like to elicit a discussion about an updated procedure, as traditional taxonomy was not primarily designed to be used for protists, nor can molecular phylogenetics solve all the problems alone. The current status, specific cases, and examples of generalized solutions are presented under conditions where practicality is openly favored over rigid taxonomic codes or blind phylogenetic approach.


Assuntos
Classificação , Parasitologia/tendências , Trypanosomatina/classificação , Filogenia
20.
Mitochondrion ; 25: 76-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26462764

RESUMO

We studied the intramitochondrial localization of several multiprotein complexes involved in U-insertion/deletion RNA editing in trypanosome mitochondria. The editing complexes are located in one or two antipodal nodes adjacent to the kinetoplast DNA (kDNA) disk, which are distinct from but associated with the minicircle catenation nodes. In some cases the proteins are in a bilateral sheet configuration. We also found that mitoribosomes have a nodal configuration. This type of organization is consistent with evidence for protein and RNA interactions of multiple editing complexes to form an ~40S editosome and also an interaction of editosomes with mitochondrial ribosomes.


Assuntos
DNA de Cinetoplasto/metabolismo , Leishmania/enzimologia , Mitocôndrias/enzimologia , Ribossomos Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Edição de RNA , Leishmania/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA