Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 14(1): 12604, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824230

RESUMO

Pulse wave encephalopathy (PWE) is hypothesised to initiate many forms of dementia, motivating its identification and risk assessment. As candidate pulsatility based biomarkers for PWE, pulsatility index and pulsatility damping have been studied and, currently, do not adequately stratify risk due to variability in pulsatility and spatial bias. Here, we propose a locus-independent pulsatility transmission coefficient computed by spatially tracking pulsatility along vessels to characterise the brain pulse dynamics at a whole-organ level. Our preliminary analyses in a cohort of 20 subjects indicate that this measurement agrees with clinical observations relating blood pulsatility with age, heart rate, and sex, making it a suitable candidate to study the risk of PWE. We identified transmission differences between vascular regions perfused by the basilar and internal carotid arteries attributed to the identified dependence on cerebral blood flow, and some participants presented differences between the internal carotid perfused regions that were not related to flow or pulsatility burden, suggesting underlying mechanical differences. Large populational studies would benefit from retrospective pulsatility transmission analyses, providing a new comprehensive arterial description of the hemodynamic state in the brain. We provide a publicly available implementation of our tools to derive this coefficient, built into pre-existing open-source software.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Fluxo Pulsátil , Humanos , Feminino , Masculino , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Idoso , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/irrigação sanguínea , Análise de Onda de Pulso/métodos , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/fisiologia , Artéria Basilar/diagnóstico por imagem , Artéria Basilar/fisiologia , Adulto
2.
Commun Biol ; 7(1): 404, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570584

RESUMO

Mechanisms to modulate cerebrovascular tone are numerous, interconnected, and spatially dependent, increasing the complexity of experimental study design, interpretation of action-effect pathways, and mechanistic modelling. This difficulty is exacerbated when there is an incomplete understanding of these pathways. We propose interaction graphs to break down this complexity, while still maintaining a holistic view of mechanisms to modulate cerebrovascular tone. These graphs highlight the competing processes of neurovascular coupling, cerebral autoregulation, and cerebral reactivity. Subsequent analysis of these interaction graphs provides new insights and suggest potential directions for research on neurovascular coupling, modelling, and dementia.


Assuntos
Circulação Cerebrovascular , Acoplamento Neurovascular , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia
3.
Biomech Model Mechanobiol ; 23(1): 3-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902894

RESUMO

Historically, research into the lymphatic system has been overlooked due to both a lack of knowledge and limited recognition of its importance. In the last decade however, lymphatic research has gained substantial momentum and has included the development of a variety of computational models to aid understanding of this complex system. This article reviews existing computational fluid dynamic models of the lymphatics covering each structural component including the initial lymphatics, pre-collecting and collecting vessels, and lymph nodes. This is followed by a summary of limitations and gaps in existing computational models and reasons that development in this field has been hindered to date. Over the next decade, efforts to further characterize lymphatic anatomy and physiology are anticipated to provide key data to further inform and validate lymphatic fluid dynamic models. Development of more comprehensive multiscale- and multi-physics computational models has the potential to significantly enhance the understanding of lymphatic function in both health and disease.


Assuntos
Hidrodinâmica , Vasos Linfáticos , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Simulação por Computador , Física
4.
Clin Biomech (Bristol, Avon) ; 111: 106157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103526

RESUMO

BACKGROUND: Predicting breast tissue motion using biomechanical models can provide navigational guidance during breast cancer treatment procedures. These models typically do not account for changes in posture between procedures. Difference in shoulder position can alter the shape of the pectoral muscles and breast. A greater understanding of the differences in the shoulder orientation between prone and supine could improve the accuracy of breast biomechanical models. METHODS: 19 landmarks were placed on the sternum, clavicle, scapula, and humerus of the shoulder girdle in prone and supine breast MRIs (N = 10). These landmarks were used in an optimization framework to fit subject-specific skeletal models and compare joint angles of the shoulder girdle between these positions. FINDINGS: The mean Euclidean distance between joint locations from the fitted skeletal model and the manually identified joint locations was 15.7 mm ± 2.7 mm. Significant differences were observed between prone and supine. Compared to supine position, the shoulder girdle in the prone position had the lateral end of the clavicle in more anterior translation (i.e., scapula more protracted) (P < 0.05), the scapula in more protraction (P < 0.01), the scapula in more upward rotation (associated with humerus elevation) (P < 0.05); and the humerus more elevated (P < 0.05) for both the left and right sides. INTERPRETATION: Shoulder girdle orientation was found to be different between prone and supine. These differences would affect the shape of multiple pectoral muscles, which would affect breast shape and the accuracy of biomechanical models.


Assuntos
Articulação do Ombro , Ombro , Humanos , Ombro/diagnóstico por imagem , Ombro/fisiologia , Decúbito Dorsal , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/fisiologia , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Escápula/diagnóstico por imagem , Escápula/fisiologia , Rotação , Imageamento por Ressonância Magnética
5.
WIREs Mech Dis ; 15(4): e1608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37002617

RESUMO

Computational modeling has well-established utility in the study of cardiovascular hemodynamics, with applications in medical research and, increasingly, in clinical settings to improve the diagnosis and treatment of cardiovascular diseases. Most cardiovascular models developed to date have been of the adult circulatory system; however, the perinatal period is unique as cardiovascular physiology undergoes drastic changes from the fetal circulation, during the birth transition, and into neonatal life. There may also be further complications in this period: for example, preterm birth (defined as birth before 37 completed weeks of gestation) carries risks of short-term cardiovascular instability and is associated with increased lifetime cardiovascular risk. Here, we review computational models of the cardiovascular system in early life, their applications to date and potential improvements and enhancements of these models. We propose a roadmap for developing an open-source cardiovascular model that spans the fetal, perinatal, and postnatal periods. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Congenital Diseases > Computational Models.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Nascimento Prematuro , Gravidez , Feminino , Adulto , Recém-Nascido , Humanos , Doenças Cardiovasculares/epidemiologia , Feto/irrigação sanguínea , Hemodinâmica
6.
Front Physiol ; 14: 1104838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969588

RESUMO

Our study methodology is motivated from three disparate needs: one, imaging studies have existed in silo and study organs but not across organ systems; two, there are gaps in our understanding of paediatric structure and function; three, lack of representative data in New Zealand. Our research aims to address these issues in part, through the combination of magnetic resonance imaging, advanced image processing algorithms and computational modelling. Our study demonstrated the need to take an organ-system approach and scan multiple organs on the same child. We have pilot tested an imaging protocol to be minimally disruptive to the children and demonstrated state-of-the-art image processing and personalized computational models using the imaging data. Our imaging protocol spans brain, lungs, heart, muscle, bones, abdominal and vascular systems. Our initial set of results demonstrated child-specific measurements on one dataset. This work is novel and interesting as we have run multiple computational physiology workflows to generate personalized computational models. Our proposed work is the first step towards achieving the integration of imaging and modelling improving our understanding of the human body in paediatric health and disease.

7.
WIREs Mech Dis ; 15(1): e1579, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880683

RESUMO

Angiogenesis, arteriogenesis, and pruning are revascularization processes essential to our natural vascular development and adaptation, as well as central players in the onset and development of pathologies such as tumoral growth and stroke recovery. Computational modeling allows for repeatable experimentation and exploration of these complex biological processes. In this review, we provide an introduction to the biological understanding of the vascular adaptation processes of sprouting angiogenesis, intussusceptive angiogenesis, anastomosis, pruning, and arteriogenesis, discussing some of the more significant contributions made to the computational modeling of these processes. Each computational model represents a theoretical framework for how biology functions, and with rises in computing power and study of the problem these frameworks become more accurate and complete. We highlight physiological, pathological, and technological applications that can be benefit from the advances performed by these models, and we also identify which elements of the biology are underexplored in the current state-of-the-art computational models. This article is categorized under: Cancer > Computational Models Cardiovascular Diseases > Computational Models.


Assuntos
Diagnóstico por Imagem , Neovascularização Fisiológica , Neovascularização Fisiológica/fisiologia , Radiografia , Simulação por Computador
8.
Front Physiol ; 13: 1018134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439250

RESUMO

Computational physiological models continue to increase in complexity, however, the task of efficiently calibrating the model to available clinical data remains a significant challenge. One part of this challenge is associated with long calibration times, which present a barrier for the routine application of model-based prediction in clinical practice. Another aspect of this challenge is the limited available data for the unique calibration of complex models. Therefore, to calibrate a patient-specific model, it may be beneficial to verify that task-specific model predictions have acceptable uncertainty, rather than requiring all parameters to be uniquely identified. We have developed a pipeline that reduces the set of fitting parameters to make them structurally identifiable and to improve the efficiency of a subsequent Markov Chain Monte Carlo (MCMC) analysis. MCMC was used to find the optimal parameter values and to determine the confidence interval of a task-specific prediction. This approach was demonstrated on numerical experiments where a lumped parameter model of the cardiovascular system was calibrated to brachial artery cuff pressure, echocardiogram volume measurements, and synthetic cerebral blood flow data that approximates what can be obtained from 4D-flow MRI data. This pipeline provides a cerebral arterial pressure prediction that may be useful for determining the risk of hemorrhagic stroke. For a set of three patients, this pipeline successfully reduced the parameter set of a cardiovascular system model from 12 parameters to 8-10 structurally identifiable parameters. This enabled a significant ( > 4 × ) efficiency improvement in determining confidence intervals on predictions of pressure compared to performing a naive MCMC analysis with the full parameter set. This demonstrates the potential that the proposed pipeline has in helping address one of the key challenges preventing clinical application of such models. Additionally, for each patient, the MCMC approach yielded a 95% confidence interval on systolic blood pressure prediction in the middle cerebral artery smaller than ±10 mmHg (±1.3 kPa). The proposed pipeline exploits available high-performance computing parallelism to allow straightforward automation for general models and arbitrary data sets, enabling automated calibration of a parameter set that is specific to the available clinical data with minimal user interaction.

9.
Eur Radiol ; 32(10): 7117-7127, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35976395

RESUMO

OBJECTIVE: Three-dimensional (3D) time-resolved phase-contrast cardiac magnetic resonance (4D flow CMR) allows for unparalleled quantification of blood velocity. Despite established potential in aortic diseases, the analysis is time-consuming and requires expert knowledge, hindering clinical application. The present research aimed to develop and test a fully automatic machine learning-based pipeline for aortic 4D flow CMR analysis. METHODS: Four hundred and four subjects were prospectively included. Ground-truth to train the algorithms was generated by experts. The cohort was divided into training (323 patients) and testing (81) sets and used to train and test a 3D nnU-Net for segmentation and a Deep Q-Network algorithm for landmark detection. In-plane (IRF) and through-plane (SFRR) rotational flow descriptors and axial and circumferential wall shear stress (WSS) were computed at ten planes covering the ascending aorta and arch. RESULTS: Automatic aortic segmentation resulted in a median Dice score (DS) of 0.949 and average symmetric surface distance of 0.839 (0.632-1.071) mm, comparable with the state of the art. Aortic landmarks were located with a precision comparable with experts in the sinotubular junction and first and third supra-aortic vessels (p = 0.513, 0.592 and 0.905, respectively) but with lower precision in the pulmonary bifurcation (p = 0.028), resulting in precise localisation of analysis planes. Automatic flow assessment showed excellent (ICC > 0.9) agreement with manual quantification of SFRR and good-to-excellent agreement (ICC > 0.75) in the measurement of IRF and axial and circumferential WSS. CONCLUSION: Fully automatic analysis of complex aortic flow dynamics from 4D flow CMR is feasible. Its implementation could foster the clinical use of 4D flow CMR. KEY POINTS: • 4D flow CMR allows for unparalleled aortic blood flow analysis but requires aortic segmentation and anatomical landmark identification, which are time-consuming, limiting 4D flow CMR widespread use. • A fully automatic machine learning pipeline for aortic 4D flow CMR analysis was trained with data of 323 patients and tested in 81 patients, ensuring a balanced distribution of aneurysm aetiologies. • Automatic assessment of complex flow characteristics such as rotational flow and wall shear stress showed good-to-excellent agreement with manual quantification.


Assuntos
Aorta , Imageamento por Ressonância Magnética , Aorta/diagnóstico por imagem , Valva Aórtica , Velocidade do Fluxo Sanguíneo , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36998700

RESUMO

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

11.
Front Cardiovasc Med ; 9: 1016703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704465

RESUMO

Segmentation of the left ventricle (LV) in echocardiography is an important task for the quantification of volume and mass in heart disease. Continuing advances in echocardiography have extended imaging capabilities into the 3D domain, subsequently overcoming the geometric assumptions associated with conventional 2D acquisitions. Nevertheless, the analysis of 3D echocardiography (3DE) poses several challenges associated with limited spatial resolution, poor contrast-to-noise ratio, complex noise characteristics, and image anisotropy. To develop automated methods for 3DE analysis, a sufficiently large, labeled dataset is typically required. However, ground truth segmentations have historically been difficult to obtain due to the high inter-observer variability associated with manual analysis. We address this lack of expert consensus by registering labels derived from higher-resolution subject-specific cardiac magnetic resonance (CMR) images, producing 536 annotated 3DE images from 143 human subjects (10 of which were excluded). This heterogeneous population consists of healthy controls and patients with cardiac disease, across a range of demographics. To demonstrate the utility of such a dataset, a state-of-the-art, self-configuring deep learning network for semantic segmentation was employed for automated 3DE analysis. Using the proposed dataset for training, the network produced measurement biases of -9 ± 16 ml, -1 ± 10 ml, -2 ± 5 %, and 5 ± 23 g, for end-diastolic volume, end-systolic volume, ejection fraction, and mass, respectively, outperforming an expert human observer in terms of accuracy as well as scan-rescan reproducibility. As part of the Cardiac Atlas Project, we present here a large, publicly available 3DE dataset with ground truth labels that leverage the higher resolution and contrast of CMR, to provide a new benchmark for automated 3DE analysis. Such an approach not only reduces the effect of observer-specific bias present in manual 3DE annotations, but also enables the development of analysis techniques which exhibit better agreement with CMR compared to conventional methods. This represents an important step for enabling more efficient and accurate diagnostic and prognostic information to be obtained from echocardiography.

12.
Front Physiol ; 12: 732351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721062

RESUMO

The onset and progression of pathological heart conditions, such as cardiomyopathy or heart failure, affect its mechanical behaviour due to the remodelling of the myocardial tissues to preserve its functional response. Identification of the constitutive properties of heart tissues could provide useful biomarkers to diagnose and assess the progression of disease. We have previously demonstrated the utility of efficient AI-surrogate models to simulate passive cardiac mechanics. Here, we propose the use of this surrogate model for the identification of myocardial mechanical properties and intra-ventricular pressure by solving an inverse problem with two novel AI-based approaches. Our analysis concluded that: (i) both approaches were robust toward Gaussian noise when the ventricle data for multiple loading conditions were combined; and (ii) estimates of one and two parameters could be obtained in less than 9 and 18 s, respectively. The proposed technique yields a viable option for the translation of cardiac mechanics simulations and biophysical parameter identification methods into the clinic to improve the diagnosis and treatment of heart pathologies. In addition, the proposed estimation techniques are general and can be straightforwardly translated to other applications involving different anatomical structures.

13.
Int J Numer Method Biomed Eng ; 37(5): e3442, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522112

RESUMO

The characterization of vascular geometry is a fundamental step towards the correct interpretation of coronary artery disease. In this work, we report a comprehensive comparison of the geometry featured by coronary vessels as obtained from coronary computed tomography angiography (CCTA) and the combination of intravascular ultrasound (IVUS) with bi-plane angiography (AX) modalities. We analyzed 34 vessels from 28 patients with coronary disease, which were deferred to CCTA and IVUS procedures. We discuss agreement and discrepancies between several geometric indexes extracted from vascular geometries. Such an analysis allows us to understand to which extent the coronary vascular geometry can be reliable in the interpretation of geometric risk factors, and as a surrogate to characterize coronary artery disease.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Ultrassonografia de Intervenção
14.
Front Cardiovasc Med ; 7: 86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528977

RESUMO

Segmentation and 3D reconstruction of the human atria is of crucial importance for precise diagnosis and treatment of atrial fibrillation, the most common cardiac arrhythmia. However, the current manual segmentation of the atria from medical images is a time-consuming, labor-intensive, and error-prone process. The recent emergence of artificial intelligence, particularly deep learning, provides an alternative solution to the traditional methods that fail to accurately segment atrial structures from clinical images. This has been illustrated during the recent 2018 Atrial Segmentation Challenge for which most of the challengers developed deep learning approaches for atrial segmentation, reaching high accuracy (>90% Dice score). However, as significant discrepancies exist between the approaches developed, many important questions remain unanswered, such as which deep learning architectures and methods to ensure reliability while achieving the best performance. In this paper, we conduct an in-depth review of the current state-of-the-art of deep learning approaches for atrial segmentation from late gadolinium-enhanced MRIs, and provide critical insights for overcoming the main hindrances faced in this task.

15.
Eur Heart J Digit Health ; 1(1): 75-82, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36713961

RESUMO

Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results: First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874-0.933) for MF1 to 0.925 (0.911-0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94-4.98)% for MF1 to 3.02 (2.25-3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50-10.50)% for MF1 and 5.12 (2.15-9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation.

16.
Interface Focus ; 9(4): 20190034, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31263540

RESUMO

Clinicians face many challenges when diagnosing and treating breast cancer. These challenges include interpreting and co-locating information between different medical imaging modalities that are used to identify tumours and predicting where these tumours move to during different treatment procedures. We have developed a novel automated breast image analysis workflow that integrates state-of-the-art image processing and machine learning techniques, personalized three-dimensional biomechanical modelling and population-based statistical analysis to assist clinicians during breast cancer detection and treatment procedures. This paper summarizes our recent research to address the various technical and implementation challenges associated with creating a fully automated system. The workflow is applied to predict the repositioning of tumours from the prone position, where diagnostic magnetic resonance imaging is performed, to the supine position where treatment procedures are performed. We discuss our recent advances towards addressing challenges in identifying the mechanical properties of the breast and evaluating the accuracy of the biomechanical models. We also describe our progress in implementing a prototype of this workflow in clinical practice. Clinical adoption of these state-of-the-art modelling techniques has significant potential for reducing the number of misdiagnosed breast cancers, while also helping to improve the treatment of patients.

17.
Catheter Cardiovasc Interv ; 93(2): 266-274, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277641

RESUMO

OBJECTIVES: To evaluate the diagnostic performance of a novel computational algorithm based on three-dimensional intravascular ultrasound (IVUS) imaging in estimating fractional flow reserve (IVUSFR ), compared to gold-standard invasive measurements (FFRINVAS ). BACKGROUND: IVUS provides accurate anatomical evaluation of the lumen and vessel wall and has been validated as a useful tool to guide percutaneous coronary intervention. However, IVUS poorly represents the functional status (i.e., flow-related information) of the imaged vessel. METHODS: Patients with known or suspected stable coronary disease scheduled for elective cardiac catheterization underwent FFRINVAS measurement and IVUS imaging in the same procedure to evaluate intermediate lesions. A processing methodology was applied on IVUS to generate a computational mesh condensing the geometric characteristics of the vessel. Computation of IVUSFR was obtained from patient-level morphological definition of arterial districts and from territory-specific boundary conditions. FFRINVAS measurements were dichotomized at the 0.80 threshold to define hemodynamically significant lesions. RESULTS: A total of 24 patients with 34 vessels were analyzed. IVUSFR significantly correlated (r = 0.79; P < 0.001) and showed good agreement with FFRINVAS , with a mean difference of -0.008 ± 0.067 (P = 0.47). IVUSFR presented an overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 91%, 89%, 92%, 80%, and 96%, respectively, to detect significant stenosis. CONCLUSION: The computational processing of IVUSFR is a new method that allows the evaluation of the functional significance of coronary stenosis in an accurate way, enriching the anatomical information of grayscale IVUS.


Assuntos
Algoritmos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Imageamento Tridimensional , Ultrassonografia de Intervenção/métodos , Idoso , Cateterismo Cardíaco , Angiografia Coronária , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
18.
Front Physiol ; 9: 292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643815

RESUMO

Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of patient-specific vessel constituents, mechanical material parameters are estimated using in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this approach are exposed and discussed.

19.
IEEE Trans Biomed Eng ; 62(12): 2867-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26111388

RESUMO

UNLABELLED:   GOAL: Coronary intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment. However, volume-based data retrieved from IVUS studies can be misleading due to the artifacts generated by the cardiac motion, hindering diagnostic, and visualization of the vessel condition. Then, we propose an image-based gating method that improves the performance of the preexisting methods, delivering a gating in an appropriate time for clinical practice. METHODS: We propose a fully automatic method to synergically integrate motion signals from different gating methods to improve the cardiac phase estimation. Additionally, we present a local extrema identification method that provides a more accurate extraction of a cardiac phase and, also, a scheme for multiple phase extraction mandatory for elastography-type studies. RESULTS: A comparison with three state-of-the-art methods is performed over 61 in-vivo IVUS studies including a wide range of physiological situations. The results show that the proposed strategy offers: 1) a more accurate cardiac phase extraction; 2) a lower frame oversampling and/or omission in the extracted phase data (error of 1.492 ±0.977 heartbeats per study, mean ± SD); 3) a more accurate and robust heartbeat period detection with a Bland-Altman coefficient of reproducibility (RPC) of 0.23 s, while the second closest method presents an RPC of 0.36 s. SIGNIFICANCE: The integration of motion signals performed by our method shown an improvement of the gating accuracy and reliability.


Assuntos
Ecocardiografia/métodos , Frequência Cardíaca/fisiologia , Processamento de Sinais Assistido por Computador , Ultrassonografia de Intervenção/métodos , Vasos Coronários/diagnóstico por imagem , Coração/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA