Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 262: 106669, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37647752

RESUMO

The mussels are species with high socio-economic weights and are often used as bioindicators of biological and chemical contamination. In the field and aquaculture, they can intake microplastics during filter-feeding, and the microplastics can have a negative impact on their health, even at low concentrations. The effects of microplastics have yet to be fully examined on the blue mussel (Mytilus edulis), considering the factors of ageing and sorption of some polyaromatic hydrocarbons (PAHs), ubiquitous environmental contaminants. In this work, 5 different exposure conditions were studied: pristine microplastics, microplastics aged for 1000 days under UV radiation, microplastics sorbing PAHs, as well as microplastics both aged and sorbing PAHs, in parallel to controls. The microplastic changes after ageing were studied with spectroscopic and chromatographic methods. Then, 8-day laboratory exposures of mussels at 10 µg/L of microplastics were performed. The oxidative stress, as well as neurotoxic and immunological responses of M. edulis, were measured using a battery of biomarkers (catalase/CAT, superoxide dismutase/SOD, glutathione S-transferases/GST, acetylcholinesterase/AChE) in 3 different organs (digestive gland, gills and mantle), and acid phosphatase in hemolymph. Then, a study of lipid impairments on the digestive gland was performed through the use of lipidomic tools. No significant difference of oxidative stress activity was observed for all the tissues of mussels exposed to pristine microplastics at 10 µg/L, compared to controls. The ageing and the PAH soption onto microplastics were influencing factors of the oxydative stress in mussels with increased CAT activities in the digestive glands and decreased SOD activities in the mantles. The neurotoxicity was highlighted by higher AChE activities measured in the mantle of mussels exposed to all the microplastic treatments, compared to controls. Concerning lipidomics, no compound was determined as a biomarker of microplastic exposure. The study demonstrated a low toxicity of microplastics at environmental relevant concentration with a 8-day exposure and using the chosen biomarkers. However, some microplastic changes seemed to lead to specific effects on mussels.


Assuntos
Hidrocarbonetos Aromáticos , Mytilus edulis , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Acetilcolinesterase , Poluentes Químicos da Água/toxicidade , Envelhecimento
2.
Mar Pollut Bull ; 171: 112701, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245992

RESUMO

The increase of plastic production from the middle of the twentieth century was inevitably followed by an increase in the amount of plastic dumped in the natural environment. There, the plastic debris are exposed to sunlight, temperature, humidity, and physical stress. This can induce photo-oxidative and thermal degradation. This review discusses the mechanism of plastics UV weathering and its characteristics. Comparison of the photodegradation rate and physico-chemical properties are made according to the weathering mode (natural/accelerated) and medium (air/water). Since the photodegradation can lead to plastics fragmentation, this phenomenon is described along with the methodologies used in literature to evaluate the fragmentation. The impact of the photodegraded plastic debris on the marine environment is also presented in term of (i) photodegradation products and stabilizers leakage, (ii) organic pollutants accumulation, transfer, and leakage, and (iii) toxicity on marine organisms.


Assuntos
Plásticos , Poluentes Químicos da Água , Organismos Aquáticos , Monitoramento Ambiental , Luz Solar , Resíduos/análise , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
3.
Environ Pollut ; 280: 116949, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774549

RESUMO

Plastic debris in the marine environment are the subject of an extensive literature. According to studies dedicated to the determination of plastic litter abundance and to the characterisation of degradation and fragmentation processes, models were used to estimate the global plastic debris abundance and to simulate their transfer and distribution. Despite these efforts, there is still missing plastic in the models used as areas exist where plastic abundance is less than that estimated. In parallel, microplastics presence in the atmosphere and in remote areas was confirmed suggesting long range atmospheric transport. Potentially addressing both these issues, recent literature suggests that microplastics (MPs) and nanoplastics (NPs) can be transferred from the marine environment to the atmosphere via the bursting of air bubbles at the sea surface. Nevertheless, to date there is no direct evidence of this transfer. In this study, we evaluate plastic particles transfer as a function of MPs/NPs characteristics and water composition by simulating the bubble bursting phenomenon in a laboratory reactor. Size distribution of transferred particles were recorded, and their plastic nature was confirmed using electron microscopy. Results show that under tested conditions, the transfer is possible but limited to particles smaller than 1 µm. The influence of the presence of proxies of components of the sea surface microlayer in the water was evaluated showing a higher particle transfer rate in the presence of a surfactant (sodium dodecyl sulfate) and no significant effect of polysaccharides (xanthan gum and dextran). The surface state of the particles can alter their behaviour in the aqueous phase and thus their transfer to the atmosphere. The effect of bubble size was also evaluated showing a higher transfer rate with the smaller bubble size. In addition, experiments performed with grounded polyethylene (PE) samples showed higher transfer for UV-aged PE than for pristine PE.


Assuntos
Plásticos , Poluentes Químicos da Água , Atmosfera , Monitoramento Ambiental , Microplásticos , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA