Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 47(8): 2896-2904, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723716

RESUMO

BACKGROUND: Solid renal masses are often indeterminate for benignity versus malignancy on magnetic resonance imaging. Such masses are typically evaluated with either percutaneous biopsy or surgical resection. Percutaneous biopsy can be non-diagnostic and some surgically resected lesions are inadvertently benign. PURPOSE: To assess the performance of ten machine learning (ML) algorithms trained with MRI-based radiomics features in distinguishing benign from malignant solid renal masses. METHODS: Patients with solid renal masses identified on pre-intervention MRI were curated from our institutional database. Masses with a definitive diagnosis via imaging (for angiomyolipomas) or via biopsy or surgical resection (for oncocytomas or renal cell carcinomas) were selected. Each mass was segmented for both T2- and post-contrast T1-weighted images. Radiomics features were derived from the segmented masses for each imaging sequence. Ten ML algorithms were trained with the radiomics features gleaned from each MR sequence, as well as the combination of MR sequences. RESULTS: In total, 182 renal masses in 160 patients were included in the study. The support vector machine algorithm trained on radiomics features from T2-weighted images performed superiorly, with an accuracy of 0.80 and an area under the curve (AUC) of 0.79. Linear discriminant analysis (accuracy = 0.84 and AUC = 0.77) and logistic regression (accuracy = 0.78 and AUC = 0.78) algorithms trained on T2-based radiomics features performed similarly. ML algorithms trained on radiomics features from post-contrast T1-weighted images or the combination of radiomics features from T2- and post-contrast T1-weighted images yielded lower performance. CONCLUSION: Machine learning models trained with radiomics features derived from T2-weighted images can provide high accuracy for distinguishing benign from malignant solid renal masses. CLINICAL IMPACT: Machine learning models derived from MRI-based radiomics features may improve the clinical management of solid renal masses and have the potential to reduce the frequency with which benign solid renal masses are biopsied or surgically resected.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico por imagem , Humanos , Neoplasias Renais/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA