Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 222: 118874, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914498

RESUMO

For mitigation of climate change, all sources and sinks of greenhouse gases from the environment must be quantified and their driving factors identified. Nitrous oxide (N2O) is a strong greenhouse gas, and the contribution of aquatic systems to the global N2O budget remains poorly constrained. In this study, we measured N2O concentrations in a eutrophic coastal system, Roskilde Fjord (Denmark), and combined measurements with statistical modeling to quantify the N2O fluxes and budget in the system over a period of six months. To do so, we collected water at 15 sampling points and measured N2O concentrations along with physico-chemical water quality parameters, e.g. temperature, salinity, dissolved inorganic nitrogen and phosphorus, and silicon. We used mixed-effect regression models to predict N2O concentrations in the water from water quality parameters. We then derived N2O fluxes using well-established equations of N2O solubility and water-atmosphere exchanges. These fluxes were then put in perspective with those measured at the landscape scale by eddy-covariance at a 96 m nearby tall tower, and to those estimated from the agricultural land next to the fjord using Intergovernmental Panel on Climate Change (IPCC) guidelines. N2O concentrations in the Roskilde Fjord ranged between 2.40 and 8.05 nmol l-1. The best fitting model between water parameters and N2O concentrations in water included phosphorus and temperature. We estimated that (i) Roskilde Fjord was a sink of N2O, with a median inward flux of -0.04 nmol m-2 s-1, (ii) while the surrounding median agricultural flux was 0.13-0.18 nmol m-2 s-1, and (iii) the median landscape flux was 0.07 nmol m-2 s-1. All estimates of N2O fluxes were of the same magnitude and consistent with each other. These preliminary results need to be consolidated by further research.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Monitoramento Ambiental/métodos , Estuários , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Fósforo
2.
Sci Total Environ ; 836: 154932, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447172

RESUMO

Application of crop residues to agricultural fields is a significant source of the greenhouse gas nitrous oxide (N2O) and an essential factor affecting the soil organic carbon (SOC) balance. Here we present a biogeochemical modelling study assessing the impact of crop residue management on soil C stocks and N2O fluxes for EU-27 using available information on soils, management and climate and by testing various scenarios of residue management. Three biogeochemical models, i.e. CERES-EGC, LandscapeDNDC and LandscapeDNDC-MeTrx, were used in an ensemble approach on a grid of 0.25° × 0.25° spatial resolution for calculating EU-27 wide inventories of changes in SOC stocks and N2O emissions due to residue management for the years 2000-2100 using different climate change projections (RCP4.5 and RCP8.5). Our results show, that climate change poses a threat to cropping systems in Europe, resulting in potential yield declines, increased N2O emissions and loss of SOC. This highlights the need for adapting crop management to mitigate climate change impacts, e.g. by improved residue management. For a scenario with 100% residues retention and reduced tillage we calculated that in average SOC stocks may increase over 50-100 years by 19-23% under RCP8.5 and RCP4.5. However, complete retention of crop residues also resulted in an increase of soil N2O emissions by 17-30%, so that climate benefits due to increases in SOC stocks were eventually compensated by increased N2O emissions. The long-term EFN2O for residue N incorporation was 1.18% and, thus slightly higher as the 1% value used by IPCC. We conclude that residue management can be an important strategy for mitigating climate change impacts on SOC stocks, though it requires as well improvements in N management for N2O mitigation.


Assuntos
Óxido Nitroso , Solo , Agricultura/métodos , Carbono , Produtos Agrícolas , Fertilizantes/análise , Óxido Nitroso/análise , Solo/química
3.
Environ Pollut ; 238: 760-770, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625300

RESUMO

The stomatal compensation point of ammonia (χs) is a key factor controlling plant-atmosphere NH3 exchange, which is dependent on the nitrogen (N) supply and varies among plant species. However, knowledge gaps remain concerning the effects of elevated atmospheric N deposition and ozone (O3) on χs for forest species, resulting in large uncertainties in the parameterizations of NH3 incorporated into atmospheric chemistry and transport models (CTMs). Here, we present leaf-scale measurements of χs for hybrid poplar clone '546' (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial) growing in two N treatments (N0, no N added; N50, 50 kg N ha-1 yr-1 urea fertilizer added) and two O3 treatments (CF, charcoal-filtered air; E-O3, non-filtered air plus 40 ppb) for 105 days. Our results showed that χs was significantly reduced by E-O3 (41%) and elevated N (19%). The interaction of N and O3 was significant, and N can mitigate the negative effects of O3 on χs. Elevated O3 significantly reduced the light-saturated photosynthetic rate (Asat) and chlorophyll (Chl) content and significantly increased intercellular CO2 concentrations (Ci), but had no significant effect on stomatal conductance (gs). By contrast, elevated N did not significantly affect all measured photosynthetic parameters. Overall, χs was significantly and positively correlated with Asat, gs and Chl, whereas a significant and negative relationship was observed between χs and Ci. Our results suggest that O3-induced changes in Asat, Ci and Chl may affect χs. Our findings provide a scientific basis for optimizing parameterizations of χs in CTMs in response to environmental change factors (i.e., elevated N deposition and/or O3) in the future.


Assuntos
Amônia/metabolismo , Nitrogênio/toxicidade , Ozônio/toxicidade , Populus/fisiologia , Clorofila/metabolismo , Nitrogênio/análise , Ozônio/análise , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Populus/metabolismo
4.
Sci Total Environ ; 598: 445-470, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28454025

RESUMO

Biogeochemical simulation models are important tools for describing and quantifying the contribution of agricultural systems to C sequestration and GHG source/sink status. The abundance of simulation tools developed over recent decades, however, creates a difficulty because predictions from different models show large variability. Discrepancies between the conclusions of different modelling studies are often ascribed to differences in the physical and biogeochemical processes incorporated in equations of C and N cycles and their interactions. Here we review the literature to determine the state-of-the-art in modelling agricultural (crop and grassland) systems. In order to carry out this study, we selected the range of biogeochemical models used by the CN-MIP consortium of FACCE-JPI (http://www.faccejpi.com): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, RothC and STICS. In our analysis, these models were assessed for the quality and comprehensiveness of underlying processes related to pedo-climatic conditions and management practices, but also with respect to time and space of application, and for their accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined pedo-climatic conditions in the unsatisfactory performance of the models (46.2%), followed by limitations in the algorithms simulating the effects of management practices (33.1%). The multiplicity of scales in both time and space is a fundamental feature, which explains the remaining weaknesses (i.e. 20.7%). Innovative aspects have been identified for future development of C and N models. They include the explicit representation of soil microbial biomass to drive soil organic matter turnover, the effect of N shortage on SOM decomposition, the improvements related to the production and consumption of gases and an adequate simulations of gas transport in soil. On these bases, the assessment of trends and gaps in the modelling approaches currently employed to represent biogeochemical cycles in crop and grassland systems appears an essential step for future research.

5.
Bioresour Technol ; 152: 511-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24280674

RESUMO

The objective of the work reported here was to reduce the uncertainty on the greenhouse gas balances of biofuels using agro-ecosystem modeling at a high resolution over the Ile-de-France region in Northern France. The emissions simulated during the feedstock production stage were input to a life-cycle assessment of candidate biofuel pathways: bioethanol from wheat, sugar-beet and miscanthus, and biodiesel from oilseed rape. Compared to the widely-used methodology based on fixed emission factors, ecosystem modeling lead to 55-70% lower estimates for N2O emissions, emphasizing the importance of regional factors. The life-cycle GHG emissions of first-generation biofuels were 50-70% lower than fossil-based equivalents, and 85% lower for cellulosic ethanol. When including indirect land-use change effects, GHG savings became marginal for biodiesel and wheat ethanol, but were positive due to direct effects for cellulosic ethanol.


Assuntos
Biocombustíveis , Ecossistema , Modelos Teóricos , Biomassa , Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , França , Efeito Estufa , Nitrogênio/análise , Óxido Nitroso/análise , Solo/química
6.
Environ Pollut ; 154(3): 390-403, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18316144

RESUMO

The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH4+]apo) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH4+]apo. This [NH4+]apo has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH4+]apo.


Assuntos
Amônia/metabolismo , Produtos Agrícolas , Poluentes Ambientais/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Atmosfera , Parede Celular/metabolismo , Concentração de Íons de Hidrogênio , Modelos Biológicos , Floema/metabolismo , Poaceae/metabolismo , Temperatura , Xilema/metabolismo
7.
Plant Cell Environ ; 30(9): 1191-204, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17661755

RESUMO

C(4)-type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters - the maximum catalytic rate of the enzyme ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (V(pmax)) and the maximum electron transport rate (J(max)) - were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (A(n)) versus intercellular air space CO(2) concentrations (C(i)), and A(n) versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15-40 degrees C. Values of V(cmax), V(pmax) and J(max) were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of V(pmax) and J(max) obtained at 25 degrees C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of V(cmax), V(pmax) and J(max) are then proposed. These parameters should be further tested with C(4) plants for validation. Other model key parameters such as the mesophyll cell conductance to CO(2) (g(i)), the bundle sheath cells conductance to CO(2) (g(bs)) and Michaelis-Menten constants for CO(2) and O(2) (K(c), K(p) and K(o)) also vary with temperature and should be better parameterized.


Assuntos
Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Transporte de Elétrons , Cinética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA