Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918375

RESUMO

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Assuntos
Cisteína , Oxirredução , Estabilidade Proteica , Cisteína/metabolismo , Cisteína/química , Acetilação , Humanos , Oxigênio/metabolismo , Oxigênio/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Células HEK293
2.
Cancer Res ; 84(11): 1799-1816, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502859

RESUMO

Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE: Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Análise de Célula Única , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Análise de Célula Única/métodos , Animais , Camundongos , Transcriptoma , Humanos , Rim/patologia , Rim/metabolismo , Carcinogênese/genética , Proliferação de Células/genética
3.
Proc Natl Acad Sci U S A ; 119(32): e2201483119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930668

RESUMO

The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.


Assuntos
Proteínas Intrinsicamente Desordenadas , Histona Desmetilases com o Domínio Jumonji , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidroxilação , Proteínas Intrinsicamente Desordenadas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Domínios Proteicos , Fatores de Transcrição/metabolismo
4.
Science ; 365(6448): 65-69, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31273118

RESUMO

Organisms must respond to hypoxia to preserve oxygen homeostasis. We identify a thiol oxidase, previously assigned as cysteamine (2-aminoethanethiol) dioxygenase (ADO), as a low oxygen affinity (high-K mO2) amino-terminal cysteine dioxygenase that transduces the oxygen-regulated stability of proteins by the N-degron pathway in human cells. ADO catalyzes the conversion of amino-terminal cysteine to cysteine sulfinic acid and is related to the plant cysteine oxidases that mediate responses to hypoxia by an identical posttranslational modification. We show in human cells that ADO regulates RGS4/5 (regulator of G protein signaling) N-degron substrates, modulates G protein-coupled calcium ion signals and mitogen-activated protein kinase activity, and that its activity extends to other N-cysteine proteins including the angiogenic cytokine interleukin-32. Identification of a conserved enzymatic oxygen sensor in multicellular eukaryotes opens routes to better understanding and therapeutic targeting of adaptive responses to hypoxia.


Assuntos
Dioxigenases/metabolismo , Oxigênio/metabolismo , Anaerobiose , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Cisteína/metabolismo , Dioxigenases/genética , Humanos , Interleucinas/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas RGS/metabolismo
5.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429208

RESUMO

Hypoxia-inducible factor (HIF) is the major transcriptional regulator of cellular responses to hypoxia. The two principal HIF-α isoforms, HIF-1α and HIF-2α, are progressively stabilized in response to hypoxia and form heterodimers with HIF-1ß to activate a broad range of transcriptional responses. Here, we report on the pan-genomic distribution of isoform-specific HIF binding in response to hypoxia of varying severity and duration, and in response to genetic ablation of each HIF-α isoform. Our findings reveal that, despite an identical consensus recognition sequence in DNA, each HIF heterodimer loads progressively at a distinct repertoire of cell-type-specific sites across the genome, with little evidence of redistribution under any of the conditions examined. Marked biases towards promoter-proximal binding of HIF-1 and promoter-distant binding of HIF-2 were observed under all conditions and were consistent in multiple cell type. The findings imply that each HIF isoform has an inherent property that determines its binding distribution across the genome, which might be exploited to therapeutically target the specific transcriptional output of each isoform independently.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transcrição Gênica , Linhagem Celular , Cromatina/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Epigenômica , Regulação da Expressão Gênica/genética , Humanos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética
6.
Nucleic Acids Res ; 46(1): 120-133, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29059365

RESUMO

Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. To identify genes regulated by hypoxia at the transcriptional level, we pulse-labeled HUVEC cells with 4-thiouridine and sequenced nascent transcripts. Then, we searched genome-wide binding profiles from the ENCODE project for factors that correlated with changes in transcription and identified binding of several components of the Sin3A co-repressor complex, including SIN3A, SAP30 and HDAC1/2, proximal to genes repressed by hypoxia. SIN3A interference revealed that it participates in the downregulation of 75% of the hypoxia-repressed genes in endothelial cells. Unexpectedly, it also blunted the induction of 47% of the upregulated genes, suggesting a role for this corepressor in gene induction. In agreement, ChIP-seq experiments showed that SIN3A preferentially localizes to the promoter region of actively transcribed genes and that SIN3A signal was enriched in hypoxia-repressed genes, prior exposure to the stimulus. Importantly, SINA3 occupancy was not altered by hypoxia in spite of changes in H3K27ac signal. In summary, our results reveal a prominent role for SIN3A in the transcriptional response to hypoxia and suggest a model where modulation of the associated histone deacetylase activity, rather than its recruitment, determines the transcriptional output.


Assuntos
Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Complexos Multiproteicos/genética , Proteínas Repressoras/genética , Transcrição Gênica , Hipóxia Celular , Células Cultivadas , Células HEK293 , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3
7.
ACS Chem Biol ; 12(4): 1011-1019, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28051298

RESUMO

The JmjC histone lysine demethylases (KDMs) are epigenetic regulators involved in the removal of methyl groups from post-translationally modified lysyl residues within histone tails, modulating gene transcription. These enzymes require molecular oxygen for catalytic activity and, as 2-oxoglutarate (2OG)-dependent oxygenases, are related to the cellular oxygen sensing HIF hydroxylases PHD2 and FIH. Recent studies have indicated that the activity of some KDMs, including the pseudogene-encoded KDM4E, may be sensitive to changing oxygen concentrations. Here, we report detailed analysis of the effect of oxygen availability on the activity of the KDM4 subfamily member KDM4A, importantly demonstrating a high level of O2 sensitivity both with isolated protein and in cells. Kinetic analysis of the recombinant enzyme revealed a high KMapp(O2) of 173 ± 23 µM, indicating that the activity of the enzyme is able to respond sensitively to a reduction in oxygen concentration. Furthermore, immunofluorescence experiments in U2OS cells conditionally overexpressing KDM4A showed that the cellular activity of KDM4A against its primary substrate, H3K9me3, displayed a graded response to depleting oxygen concentrations in line with the data obtained using isolated protein. These results suggest that KDM4A possesses the potential to act as an oxygen sensor in the context of chromatin modifications, with possible implications for epigenetic regulation in hypoxic disease states. Importantly, this correlation between the oxygen sensitivity of the catalytic activity of KDM4A in biochemical and cellular assays demonstrates the utility of biochemical studies in understanding the factors contributing to the diverse biological functions and varied activity of the 2OG oxygenases.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxigênio/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Imunofluorescência , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Cinética , Pseudogenes
8.
PLoS One ; 10(8): e0134645, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26262842

RESUMO

General activation of hypoxia-inducible factor (HIF) pathways is classically associated with adverse prognosis in cancer and has been proposed to contribute to oncogenic drive. In clear cell renal carcinoma (CCRC) HIF pathways are upregulated by inactivation of the von-Hippel-Lindau tumor suppressor. However HIF-1α and HIF-2α have contrasting effects on experimental tumor progression. To better understand this paradox we examined pan-genomic patterns of HIF DNA binding and associated gene expression in response to manipulation of HIF-1α and HIF-2α and related the findings to CCRC prognosis. Our findings reveal distinct pan-genomic organization of canonical and non-canonical HIF isoform-specific DNA binding at thousands of sites. Overall associations were observed between HIF-1α-specific binding, and genes associated with favorable prognosis and between HIF-2α-specific binding and adverse prognosis. However within each isoform-specific set, individual gene associations were heterogeneous in sign and magnitude, suggesting that activation of each HIF-α isoform contributes a highly complex mix of pro- and anti-tumorigenic effects.


Assuntos
Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ativação Transcricional
9.
J Biol Chem ; 290(41): 24891-901, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26296884

RESUMO

Interactions between biological pathways and molecular oxygen require robust mechanisms for detecting and responding to changes in cellular oxygen availability, to support oxygen homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) catalyzes a two-step reaction resulting in the C-terminal amidation of peptides, a process important for their stability and biological activity. Here we show that in human, mouse, and insect cells, peptide amidation is exquisitely sensitive to hypoxia. Different amidation events on chromogranin A, and on peptides processed from proopiomelanocortin, manifest similar striking sensitivity to hypoxia in a range of neuroendocrine cells, being progressively inhibited from mild (7% O2) to severe (1% O2) hypoxia. In developing Drosophila melanogaster larvae, FMRF amidation in thoracic ventral (Tv) neurons is strikingly suppressed by hypoxia. Our findings have thus defined a novel monooxygenase-based oxygen sensing mechanism that has the capacity to signal changes in oxygen availability to peptidergic pathways.


Assuntos
Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Células Neuroendócrinas/metabolismo , Oxigênio/metabolismo , Amidas/metabolismo , Sequência de Aminoácidos , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Cromogranina A/farmacologia , Drosophila melanogaster/enzimologia , Humanos , Camundongos , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Células Neuroendócrinas/efeitos dos fármacos
10.
Cancer Metab ; 2(1): 3, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24491179

RESUMO

Both tumor hypoxia and dysregulated metabolism are classical features of cancer. Recent analyses have revealed complex interconnections between oncogenic activation, hypoxia signaling systems and metabolic pathways that are dysregulated in cancer. These studies have demonstrated that rather than responding simply to error signals arising from energy depletion or tumor hypoxia, metabolic and hypoxia signaling pathways are also directly connected to oncogenic signaling mechanisms at many points. This review will summarize current understanding of the role of hypoxia inducible factor (HIF) in these networks. It will also discuss the role of these interconnected pathways in generating the cancer phenotype; in particular, the implications of switching massive pathways that are physiologically 'hard-wired' to oncogenic mechanisms driving cancer.

11.
EMBO Rep ; 13(3): 251-7, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22310300

RESUMO

Hypoxic and oxidant stresses can coexist in biological systems, and oxidant stress has been proposed to activate hypoxia pathways through the inactivation of the 'oxygen-sensing' hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. Here, we show that despite reduced sensitivity to cellular hypoxia, the HIF asparaginyl hydroxylase--known as FIH, factor inhibiting HIF--is strikingly more sensitive to peroxide than the HIF prolyl hydroxylases. These contrasting sensitivities indicate that oxidant stress is unlikely to signal hypoxia directly to the HIF system, but that hypoxia and oxidant stress can interact functionally as distinct regulators of HIF transcriptional output.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Peróxidos/metabolismo , Proteínas Repressoras/metabolismo , Hipóxia Celular/genética , Linhagem Celular , Cisteína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxilação/efeitos dos fármacos , Oxigenases de Função Mista/antagonistas & inibidores , Peróxidos/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Transcrição Gênica
12.
Blood ; 117(20): 5276-7, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21596862

RESUMO

New evidence suggests that the cellular oxygen-sensing hypoxia-inducible factor(HIF) pathway may be protected by a double buffer of cellular antioxidant defense. Key players in the oxygen-dependent regulation of this pathway are the prolyl hydroxylase domain-containing enzymes (PHDs) that catalyze the prolyl-4-hydroxylation of HIFα, dependent on the presence of oxygen, 2-oxoglutarate, and iron in the ferrous (Fe(2+)) form. Vitamin C is also required as a cofactor, possibly to maintain the catalytic iron center in its functional Fe(2+)) state, although both the mechanism and the in vivo requirement are not absolutely clear.

13.
J Biol Chem ; 282(18): 13264-9, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17339318

RESUMO

The von Hippel-Lindau tumor suppressor (pVHL) targets hydroxylated alpha-subunits of hypoxia-inducible factor (HIF) for ubiquitin-mediated proteasomal destruction through direct interaction with the hydroxyproline binding pocket in its beta-domain. Although disruption of this process may contribute to VHL-associated tumor predisposition by up-regulation of HIF target genes, genetic and biochemical analyses support the existence of additional functions, including a role in the assembly of extracellular matrix. In an attempt to delineate these pathways, we searched for novel pVHL-binding proteins. Here we report a direct, hydroxylation-dependent interaction with alpha-chains of collagen IV. Interaction with pVHL was also observed with fibrillar collagen chains, but not the folded collagen triple helix. The interaction was suppressed by a wide range of tumor-associated mutations, including those that do not disturb the regulation of HIF, supporting a role in HIF-independent tumor suppressor functions.


Assuntos
Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Hidroxiprolina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Linhagem Celular , Colágeno Tipo IV/genética , Humanos , Hidroxilação , Neoplasias/genética , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
14.
Proc Natl Acad Sci U S A ; 103(40): 14767-72, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17003112

RESUMO

Studies on hypoxia-sensitive pathways have revealed a series of Fe(II)-dependent dioxygenases that regulate hypoxia-inducible factor (HIF) by prolyl and asparaginyl hydroxylation. The recognition of these unprecedented signaling processes has led to a search for other substrates of the HIF hydroxylases. Here we show that the human HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also efficiently hydroxylates specific asparaginyl (Asn)-residues within proteins of the IkappaB family. After the identification of a series of ankyrin repeat domain (ARD)-containing proteins in a screen for proteins interacting with FIH, the ARDs of p105 (NFKB1) and IkappaBalpha were shown to be efficiently hydroxylated by FIH at specific Asn residues in the hairpin loops linking particular ankyrin repeats. The target Asn residue is highly conserved as part of the ankyrin consensus, and peptides derived from a diverse range of ARD-containing proteins supported FIH enzyme activity. These findings demonstrate that this type of protein hydroxylation is not restricted to HIF and strongly suggest that FIH-dependent ARD hydroxylation is a common occurrence, potentially providing an oxygen-sensitive signal to a diverse range of processes.


Assuntos
Repetição de Anquirina , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas I-kappa B/química , Proteínas I-kappa B/metabolismo , Oxigenases de Função Mista/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Descarboxilação , Humanos , Hidroxilação , Ácidos Cetoglutáricos/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Inibidor de NF-kappaB alfa , Subunidade p50 de NF-kappa B/análise , Subunidade p50 de NF-kappa B/química , Subunidade p50 de NF-kappa B/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Fatores de Transcrição/química
15.
FEBS Lett ; 570(1-3): 166-70, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15251459

RESUMO

Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways. We have used co-purification and mass spectrometry to identify proteins that interact with PHD3. The cytosolic chaperonin TRiC was found to copurify with PHD3 in extracts from several cell types. Our results indicate that PHD3 is a TRiC substrate, providing another step at which PHD3 activity may be regulated.


Assuntos
Chaperoninas/química , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno-Prolina Dioxigenase/fisiologia , Algoritmos , Linhagem Celular , Citosol/metabolismo , Dioxigenases , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Células HeLa , Humanos , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Immunoblotting , Oxigênio/metabolismo , Peptídeos/química , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Reticulócitos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção , Tripsina/química
17.
J Cell Sci ; 116(Pt 15): 3041-9, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12829734

RESUMO

Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that plays a crucial role in mediating cellular responses to oxygen. Oxygen availability influences multiple steps in HIF activation and recent studies have indicated that at least two steps in this process are governed by a novel mode of signal transduction involving enzymatic hydroxylation of specific amino acid residues in HIF-alpha subunits by a series of 2-oxoglutarate (2-OG)-dependent oxygenases. These enzymes are non-haem iron enzymes that use dioxygen in the hydroxylation reaction and therefore provide a direct link between the availability of molecular oxygen and regulation of HIF. Prolyl hydroxylation regulates proteolytic destruction of HIF-alpha by the von Hippel-Lindau ubiquitin ligase complex, whereas HIF-alpha asparaginyl hydroxylation regulates recruitment of transcriptional coactivators. The involvement of at least two distinct types of 2-OG-dependent oxygenase in oxygen-regulated transcription suggests that these enzymes may be well suited to a role in cellular oxygen sensing.


Assuntos
Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Animais , Proteínas Reguladoras de Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia Celular , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Repressoras , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau
18.
Proc Natl Acad Sci U S A ; 99(16): 10423-8, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12149454

RESUMO

Hypoxia-inducible factor-1 (HIF) is a transcription factor central to oxygen homeostasis. It is regulated via its alpha isoforms. In normoxia they are ubiquitinated by the von Hippel-Lindau E3 ligase complex and destroyed by the proteasome, thereby preventing the formation of an active transcriptional complex. Oxygen-dependent enzymatic hydroxylation of either of two critical prolyl residues in each HIFalpha chain has recently been identified as the modification necessary for targeting by the von Hippel-Lindau E3 ligase complex. Here we demonstrate that polypeptides bearing either of these prolyl residues interfere with the degradative pathway, resulting in stabilization of endogenous HIFalpha chains and consequent up-regulation of HIF target genes. Similar peptides in which the prolyl residues are mutated are inactive. Induction of peptide expression in cell cultures affects physiologically important functions such as glucose transport and leads cocultured endothelial cells to form tubules. Coupling of these HIFalpha sequences to the HIV tat translocation domain allows delivery of recombinant peptide to cells with resultant induction of HIF-dependent genes. Injection of tat-HIF polypeptides in a murine sponge angiogenesis assay causes a markedly accelerated local angiogenic response and induction of glucose transporter-1 gene expression. These results demonstrate the feasibility of using these polypeptides to enhance HIF activity, opening additional therapeutic avenues for ischemic diseases.


Assuntos
Neovascularização Fisiológica/fisiologia , Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Animais , Sítios de Ligação , Linhagem Celular , Endotélio Vascular , Feminino , Expressão Gênica , Produtos do Gene tat/genética , Genes Reporter , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ligases , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , RNA Mensageiro , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA