Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(8): 5098-5109, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39042487

RESUMO

The meniscus regeneration can present major challenges such as mimicking tissue microstructuration or triggering cell regeneration. In the case of lesions that require a personalized approach, photoprinting offers the possibility of designing resolutive biomaterial structures. The photo-cross-linkable ink composition determines the process ease and the final network properties. In this study, we designed a range of hybrid inks composed of gelatin(G) and 6-PLA arms(P) that were photo-cross-linked using tyramine groups. The photo-cross-linking efficiency, mechanical properties, degradation, and biological interactions of inks with different G/P mass ratios were studied. The G50P50 network properties were suitable for meniscus regeneration, with Young's modulus of 6.5 MPa, degradation in 2 months, and good cell proliferation. We then confirmed the potential of these inks to produce high-resolution microstructures by printing well-defined microstructures using two-photon polymerization. These hybrid inks offer new perspectives for biocompatible, degradable, and microstructured tissue engineering scaffold creation.


Assuntos
Gelatina , Tinta , Menisco , Poliésteres , Polimerização , Impressão Tridimensional , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Tiramina , Gelatina/química , Tiramina/química , Engenharia Tecidual/métodos , Menisco/química , Alicerces Teciduais/química , Regeneração/efeitos dos fármacos , Poliésteres/química , Animais , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Humanos
2.
Nanotechnology ; 34(48)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647881

RESUMO

The design of a biomimetic scaffold is a major challenge in tissue engineering to promote tissue reconstruction. The use of synthetic polymer nanofibers is widely described as they provide biocompatible matrices whose topography mimics natural extracellular matrix (ECM). To closely match the biochemical composition of the ECM, bioactive molecules such as gelatin are added to the nanofibers to enhance cell adhesion and proliferation. To overcome the rapid solubilization of gelatin in biological fluids and to allow a lasting biological effect, the covalent crosslinking of this macromolecule in the network is crucial. The sol-gel route offers the possibility of gentle crosslinking during shaping but is rarely combined with electrospinning. In this study, we present the creation of Poly(lactic acid)/Gelatin hybrid nanofibers by sol-gel route during electrospinning. To enable sol-gel crosslinking, we synthesized star-shaped PLA and functionalized it with silane groups; then we functionalized gelatin with the same groups for their subsequent reaction with the polymer and thus the creation of the hybrid nanonetwork. We evaluated the impact of the presence of gelatin in Poly(lactic acid)/Gelatin hybrid nanofibers at different percentages on the mechanical properties, nanonetwork crosslinking, degradation and biological properties of the hybrid nanofibers. The addition of gelatin modulated nanonetwork crosslinking that impacted the stiffness of the nanofibers, resulting in softer materials for the cells. Moreover, these hybrid nanofibers also showed a significant improvement in fibroblast proliferation and present a degradation rate suitable for tissue reconstruction. Finally, the bioactive hybrid nanofibers possess versatile properties, interesting for various potential applications in tissue reconstruction.


Assuntos
Gelatina , Nanofibras , Poliésteres , Polímeros
3.
Front Bioeng Biotechnol ; 9: 807697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111738

RESUMO

The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant-host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell-material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA