Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7965, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042825

RESUMO

Hyperbolic phonon polaritons (HPhPs) can be supported in materials where the real parts of their permittivities along different directions are opposite in sign. HPhPs offer confinements of long-wavelength light to deeply subdiffractional scales, while the evanescent field allows for interactions with substrates, enabling the tuning of HPhPs by altering the underlying materials. Yet, conventionally used noble metal and dielectric substrates restrict the tunability of this approach. To overcome this challenge, here we show that doped semiconductor substrates, e.g., InAs and CdO, enable a significant tuning effect and dynamic modulations. We elucidated HPhP tuning with the InAs plasma frequency in the near-field, with a maximum difference of 8.3 times. Moreover, the system can be dynamically modulated by photo-injecting carriers into the InAs substrate, leading to a wavevector change of ~20%. Overall, the demonstrated hBN/doped semiconductor platform offers significant improvements towards manipulating HPhPs, and potential for engineered and modulated polaritonic systems.

2.
Nat Commun ; 14(1): 5240, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640711

RESUMO

Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3 has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal ß-Ga2O3 (bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

3.
Microsc Microanal ; 29(Supplement_1): 1996-1997, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613000
4.
Microsc Microanal ; 29(Supplement_1): 569-570, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613052
5.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961663

RESUMO

Infrared (IR) spectroscopy has been used for decades to study collagen in mammalian tissues. While many changes in the spectral profiles appear under polarized IR light, the absorption bands are naturally broad because of tissue heterogeneity. A better understanding of the spectra of ordered collagen will aid in the evaluation of disorder in damaged collagen and in scar tissue. To that end, collagen spectra have been acquired with polarized far-field (FF) Fourier Transform Infrared (FTIR) imaging with a Focal Plane Array detector, with the relatively new method of FF optical photothermal IR (O-PTIR), and with nano-FTIR spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM). The FF methods were applied to sections of intact tendon with fibers aligned parallel and perpendicular to the polarized light. The O-PTIR and nano-FTIR methods were applied to individual fibrils of 100-500 nm diameter, yielding the first confirmatory and complementary results on a biopolymer. We observed that the Amide I and II bands from the fibrils were narrower than those from the intact tendon, and that both relative intensities and band shapes were altered. These spectra represent reliable profiles for normal collagen type I fibrils of this dimension, under polarized IR light, and can serve as a benchmark for the study of collagenous tissues.


Assuntos
Colágeno Tipo I/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tendões/química , Animais , Microscopia , Nanotecnologia , Razão Sinal-Ruído
6.
Opt Express ; 26(14): 18423-18435, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114022

RESUMO

At terahertz (THz) frequencies, scattering-type scanning near-field optical microscopy (s-SNOM) based on continuous wave sources mostly relies on cryogenic and bulky detectors, which represents a major constraint for its practical application. Here, we devise a THz s-SNOM system that provides both amplitude and phase contrast and achieves nanoscale (60-70nm) in-plane spatial resolution. It features a quantum cascade laser that simultaneously emits THz frequency light and senses the backscattered optical field through a voltage modulation induced inherently through the self-mixing technique. We demonstrate its performance by probing a phonon-polariton-resonant CsBr crystal and doped black phosphorus flakes.

7.
Nat Nanotechnol ; 13(11): 1035-1041, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150633

RESUMO

The science and applications of electronics and optoelectronics have been driven for decades by progress in the growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantized states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional materials and hold unexplored potential to overcome the aforementioned limitations-they form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve intersubband transitions with a nanometre-scale spatial resolution and electrostatically control the absorption. This work enables the exploitation of intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, light-emitting diodes and lasers.

8.
Nano Lett ; 17(11): 6526-6533, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035061

RESUMO

We developed THz-resonant scanning probe tips, yielding strongly enhanced and nanoscale confined THz near fields at their tip apex. The tips with length in the order of the THz wavelength (λ = 96.5 µm) were fabricated by focused ion beam (FIB) machining and attached to standard atomic force microscopy (AFM) cantilevers. Measurements of the near-field intensity at the very tip apex (25 nm radius) as a function of tip length, via graphene-based (thermoelectric) near-field detection, indicate their first and second order geometrical antenna resonances for tip length of 33 and 78 µm, respectively. On resonance, we find that the near-field intensity is enhanced by one order of magnitude compared to tips of 17 µm length (standard AFM tip length), which is corroborated by numerical simulations that further predict remarkable intensity enhancements of about 107 relative to the incident field. Because of the strong field enhancement and standard AFM operation of our tips, we envision manifold and straightforward future application in scattering-type THz near-field nanoscopy and THz photocurrent nanoimaging, nanoscale nonlinear THz imaging, or nanoscale control and manipulation of matter employing ultrastrong and ultrashort THz pulses.

9.
Nano Lett ; 17(4): 2667-2673, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28323430

RESUMO

Surface-enhanced Raman spectroscopy (SERS) enables sensitive chemical studies and materials identification, relying on electromagnetic (EM) and chemical-enhancement mechanisms. Here we introduce a tool for the correlative nanoimaging of EM and SERS hotspots, areas of strongly enhanced EM fields and Raman scattering, respectively. To that end, we implemented a grating spectrometer into a scattering-type scanning near-field optical microscope (s-SNOM) for mapping of both the elastically and inelastically (Raman) scattered light from the near-field probe, that is, a sharp silicon tip. With plasmon-resonant gold dimers (canonical SERS substrates) we demonstrate with nanoscale spatial resolution that the enhanced Raman scattering from the tip is strongly correlated with its enhanced elastic scattering, the latter providing access to the EM-field enhancement at the illumination frequency. Our technique has wide application potential in the correlative nanoimaging of local-field enhancement and SERS efficiency as well as in the investigation and quality control of novel SERS substrates.

10.
Opt Express ; 23(10): 13358-69, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074585

RESUMO

We demonstrate a method of rapidly acquiring background-free infrared near-field spectra by combining magnitude and phase resolved scattering-type scanning near-field optical microscopy (s-SNOM) with a wavelength-swept quantum cascade laser (QCL). Background-free measurement of both near-field magnitude and phase allows for direct comparison with far-field absorption spectra, making the technique particularly useful for rapid and straightforward nanoscale material identification. Our experimental setup is based on the commonly used pseudo-heterodyne detection scheme, which we modify by operating the interferometer in the white light position; we show this adjustment to be critical for measurement repeatability. As a proof-of-principle experiment we measure the near-field spectrum between 1690 and 1750 cm(-1) of a PMMA disc with a spectral resolution of 1.5 cm(-1). We finish by chemically identifying two fibers on a sample surface by gathering their spectra between 1570 and 1750 cm(-1), each with a measurement time of less than 2.5 minutes. Our method offers the possibility of performing both nanoscale-resolved point spectroscopy and monochromatic imaging with a single laser that is capable of wavelength-sweeping.

11.
ACS Nano ; 8(7): 6911-21, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24897380

RESUMO

The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.


Assuntos
Raios Infravermelhos , Nanotecnologia/métodos , Tomografia/métodos , Nanoestruturas/química , Dióxido de Silício/química
12.
Phys Chem Chem Phys ; 15(43): 18944-50, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24097054

RESUMO

Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA