Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Fertil Dev ; 32(11): 1012-1021, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32693913

RESUMO

Optimising the developmental potential of immature equine oocytes and invitro-produced (IVP) embryos was explored through modifications of established media and holding temperature. In Experiment 1, delaying spontaneous resumption of meiosis through the process of simulated physiological oocyte maturation with the addition of the adenylate cyclase activator forskolin (50µM) and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (100µM) to overnight holding medium before maturation improved blastocyst production (P<0.05). In Experiment 2, the blastocyst production rate was increased significantly when cumulin (100ng mL-1) was added to the overnight holding or culture media (P<0.05). In Experiment 3, immature oocytes held overnight at 16°C before maturation had improved developmental competence than those held at 20°C and 5°C (P<0.05). There was no difference between maturation rates, but blastocyst formation per cleaved oocyte was significantly greater in oocytes held overnight at 16°C than at 20°C or 5°C. Furthermore, blastocyst formation per recovered oocyte and per fertilised oocyte was greater when oocytes were held before maturation at 16°C than at 5°C (P<0.05). In Experiment 4, the addition of sodium ascorbate (AC; 50µg mL-1) to the maturation and/or culture media of oocytes and IVP embryos did not improve blastocyst production, but did appear to lower cleavage rates compared with oocytes and embryos cultured without AC.


Assuntos
Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/crescimento & desenvolvimento , Injeções de Esperma Intracitoplásmicas/veterinária , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Colforsina/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Cavalos , Oócitos/efeitos dos fármacos
2.
Reprod Fertil Dev ; 32(3): 253-258, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32172784

RESUMO

Numerous variables affect invitro blastocyst development following intracytoplasmic sperm injection (ICSI). The paternal factor is affected by initial semen quality, processing techniques and final selection of individual spermatozoon for injection. This study investigated whether there was an effect of sperm cryoprotectant agent (CPA) on equine invitro blastocyst production, and reviews recent developments examining how processing equine semen affects ICSI outcomes. Single ejaculates from five stallions were collected and processed in a freezing extender containing either 1M dimethyl sulfoxide (DMSO) or 3.5% glycerol. Immature equine oocytes were obtained from ovarian follicles of mares during diestrus by transvaginal aspiration (n=128). After invitro maturation, MII oocytes (n=90) were fertilised by ICSI with thawed stallion spermatozoa (n=45 in both the DMSO and glycerol groups). The embryo cleavage rate was greater in the DMSO than glycerol group (73.3% vs 46.7% respectively; P=0.0098), but the blastocyst development rate per fertilised oocyte was similar between the two groups (28.9% vs 15.6% respectively; P=0.128), as was the blastocyst production rate per cleaved embryo (39.4% vs 33.3% respectively; P=0.653). In this study, cryopreservation of equine spermatozoa in 1M DMSO was correlated with significantly higher cleavage rates in IVM oocytes fertilised by ICSI compared with spermatozoa cryopreserved using 3.5% glycerol. Although not statistically significant in this small number of stallions, increased blastocyst production and individual stallion variability was observed among CPA treatments. This warrants further critical examination of cryoprotectants used in equine sperm subpopulations used for ICSI in a larger number of stallions.


Assuntos
Blastocisto/fisiologia , Criopreservação/veterinária , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Glicerol/farmacologia , Cavalos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Preservação do Sêmen/veterinária , Injeções de Esperma Intracitoplásmicas/veterinária , Espermatozoides/efeitos dos fármacos , Animais , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Feminino , Masculino , Espermatozoides/fisiologia
3.
Reprod Fertil Dev ; 31(12): 1840-1850, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31759400

RESUMO

The timing of early mitotic events during preimplantation embryo development is important for subsequent embryogenesis in many mammalian species, including mouse and human, but, to date, no study has closely examined mitotic timing in equine embryos from oocytes obtained by ovum pick-up. Here, cumulus-oocyte complexes were collected by transvaginal follicular aspiration, matured invitro and fertilised via intracytoplasmic sperm injection. Each fertilised oocyte was cultured up to the blastocyst stage and monitored by time-lapse imaging for the measurement of cell cycle intervals and identification of morphological criteria indicative of developmental potential. Of the 56 fertilised oocytes, 35 initiated mitosis and 11 progressed to the blastocyst stage. Analysis of the first three mitotic divisions in embryos that formed blastocysts determined that typical blastocyst timing (median±IQR) is 30.0±17.5min, 8.8±1.7h and 0.6±1.4h respectively. Frequent cellular fragmentation, multipolar divisions and blastomere exclusion suggested that equine embryos likely contend with a high incidence of chromosomal missegregation. Indeed, chromosome-containing micronuclei and multinuclei with extensive DNA damage were observed throughout preimplantation embryogenesis. This indicates that time-lapse image analysis may be used as a non-invasive method to assess equine embryo quality in future studies.


Assuntos
Blastocisto/citologia , Desenvolvimento Embrionário/fisiologia , Cavalos/embriologia , Microscopia , Imagem com Lapso de Tempo , Animais , Blastocisto/ultraestrutura , Blastômeros/citologia , Blastômeros/ultraestrutura , Células Cultivadas , Citocinese/fisiologia , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Feminino , Masculino , Microscopia/métodos , Microscopia/veterinária , Controle de Qualidade , Injeções de Esperma Intracitoplásmicas/métodos , Injeções de Esperma Intracitoplásmicas/veterinária , Imagem com Lapso de Tempo/métodos , Imagem com Lapso de Tempo/veterinária
4.
Cell ; 153(6): 1228-38, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23683578

RESUMO

Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.


Assuntos
Linhagem Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Técnicas de Transferência Nuclear , Adulto , Animais , Blastocisto/citologia , Fusão Celular , Núcleo Celular/genética , Separação Celular , Feminino , Feto/citologia , Humanos , Macaca mulatta , Mitocôndrias/genética , Oócitos/citologia , Oócitos/metabolismo , Pele/citologia
5.
Nature ; 493(7434): 627-31, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23103867

RESUMO

Mutations in mitochondrial DNA (mtDNA) are associated with severe human diseases and are maternally inherited through the egg's cytoplasm. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST; also called spindle-chromosomal complex transfer). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%); however, a significant portion of ST zygotes (52%) showed abnormal fertilization as determined by an irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell isolation (38%) rates were comparable to controls. All embryonic stem cell lines derived from ST zygotes had normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing embryonic stem cells similar to controls.


Assuntos
Terapia Genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Técnicas de Transferência Nuclear/normas , Adulto , Animais , Núcleo Celular/genética , Criopreservação , Citoplasma/genética , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Feminino , Fertilização , Humanos , Macaca mulatta/genética , Macaca mulatta/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Oócitos/citologia , Gravidez , Adulto Jovem , Zigoto/citologia , Zigoto/patologia
6.
Cell Stem Cell ; 11(5): 715-26, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122294

RESUMO

Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout a man's life and may have application for treating some cases of male infertility, including those caused by chemotherapy before puberty. We performed autologous and allogeneic SSC transplantations into the testes of 18 adult and 5 prepubertal recipient macaques that were rendered infertile with alkylating chemotherapy. After autologous transplant, the donor genotype from lentivirus-marked SSCs was evident in the ejaculated sperm of 9/12 adult and 3/5 prepubertal recipients after they reached maturity. Allogeneic transplant led to donor-recipient chimerism in sperm from 2/6 adult recipients. Ejaculated sperm from one recipient transplanted with allogeneic donor SSCs were injected into 85 rhesus oocytes via intracytoplasmic sperm injection. Eighty-one oocytes were fertilized, producing embryos ranging from four-cell to blastocyst with donor paternal origin confirmed in 7/81 embryos. This demonstration of functional donor spermatogenesis following SSC transplantation in primates is an important milestone for informed clinical translation.


Assuntos
Espermatogônias/transplante , Espermatozoides/fisiologia , Testículo/transplante , Animais , Macaca mulatta , Masculino , Espermatogênese , Transplante de Células-Tronco , Testículo/citologia
7.
Dev Biol ; 371(2): 146-55, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22935618

RESUMO

Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Blastocisto/metabolismo , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Genes Ligados ao Cromossomo X , Impressão Genômica , Macaca mulatta , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA