Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chembiochem ; 25(3): e202300560, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966365

RESUMO

Demand for biocompatible, non-invasive, and continuous real-time monitoring of organs-on-chip has driven the development of a variety of novel sensors. However, highest accuracy and sensitivity can arguably be achieved by integrated biosensing, which enables in situ monitoring of the in vitro microenvironment and dynamic responses of tissues and miniature organs recapitulated in organs-on-chip. This paper reviews integrated electrical, electrochemical, and optical sensing methods within organ-on-chip devices and platforms. By affording precise detection of analytes and biochemical reactions, these methods expand and advance the monitoring capabilities and reproducibility of organ-on-chip technology. The integration of these sensing techniques allows a deeper understanding of organ functions, and paves the way for important applications such as drug testing, disease modeling, and personalized medicine. By consolidating recent advancements and highlighting challenges in the field, this review aims to foster further research and innovation in the integration of biosensing in organs-on-chip.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Dispositivos Lab-On-A-Chip
2.
Sci Rep ; 13(1): 8062, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202451

RESUMO

Continuous monitoring of tissue microphysiology is a key enabling feature of the organ-on-chip (OoC) approach for in vitro drug screening and disease modeling. Integrated sensing units are particularly convenient for microenvironmental monitoring. However, sensitive in vitro and real-time measurements are challenging due to the inherently small size of OoC devices, the characteristics of commonly used materials, and external hardware setups required to support the sensing units. Here we propose a silicon-polymer hybrid OoC device that encompasses transparency and biocompatibility of polymers at the sensing area, and has the inherently superior electrical characteristics and ability to house active electronics of silicon. This multi-modal device includes two sensing units. The first unit consists of a floating-gate field-effect transistor (FG-FET), which is used to monitor changes in pH in the sensing area. The threshold voltage of the FG-FET is regulated by a capacitively-coupled gate and by the changes in charge concentration in close proximity to the extension of the floating gate, which functions as the sensing electrode. The second unit uses the extension of the FG as microelectrode, in order to monitor the action potential of electrically active cells. The layout of the chip and its packaging are compatible with multi-electrode array measurement setups, which are commonly used in electrophysiology labs. The multi-functional sensing is demonstrated by monitoring the growth of induced pluripotent stem cell-derived cortical neurons. Our multi-modal sensor is a milestone in combined monitoring of different, physiologically-relevant parameters on the same device for future OoC platforms.


Assuntos
Silício , Transistores Eletrônicos , Microeletrodos , Eletrônica , Sistemas Microfisiológicos
3.
Bioeng Transl Med ; 8(3): e10513, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206226

RESUMO

The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack of efficacy, the economic burden, and extremely long time before a compound reaches the market, have increased the relevance of human in vitro models like human (patient-derived) pluripotent stem cell (hPSC)-derived engineered heart tissues (EHTs) for the evaluation of the efficacy and toxicity of compounds at the early phase in the drug development pipeline. Consequently, the EHT contractile properties are highly relevant parameters for the analysis of cardiotoxicity, disease phenotype, and longitudinal measurements of cardiac function over time. In this study, we developed and validated the software HAARTA (Highly Accurate, Automatic and Robust Tracking Algorithm), which automatically analyzes contractile properties of EHTs by segmenting and tracking brightfield videos, using deep learning and template matching with sub-pixel precision. We demonstrate the robustness, accuracy, and computational efficiency of the software by comparing it to the state-of-the-art method (MUSCLEMOTION), and by testing it with a data set of EHTs from three different hPSC lines. HAARTA will facilitate standardized analysis of contractile properties of EHTs, which will be beneficial for in vitro drug screening and longitudinal measurements of cardiac function.

4.
Stem Cell Reports ; 16(9): 2037-2043, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34297941

RESUMO

Organ-on-chip (OoC) technology is thriving thanks to stem cells availability and international OoC programs. Concerted standardization, qualification, and independent testing of devices are needed to coherently develop OoC technology further and fulfill its potential in drug development, disease modeling, and personalized medicine. The OoC roadmap can lead the way forward.


Assuntos
Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Células-Tronco/citologia , Desenvolvimento de Medicamentos/instrumentação , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Humanos , Medicina de Precisão , Células-Tronco/metabolismo
5.
Micromachines (Basel) ; 13(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35056214

RESUMO

Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.

6.
Sci Adv ; 6(19): eaba2007, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494725

RESUMO

Interaction between dipolar forces, such as permanent magnets, generally leads to the formation of one-dimensional chains and rings. We investigated whether it was possible to let dipoles self-assemble into three-dimensional structures by encapsulating them in a shell with a specific shape. We found that the condition for self-assembly of a three-dimensional crystal is satisfied when the energies of dipoles in the parallel and antiparallel states are equal. Our experiments show that the most regular structures are formed using cylinders and cuboids and not by spheroids. This simple design rule will help the self-assembly community to realize three-dimensional crystals from objects in the micrometer range, which opens up the way toward previously unknown metamaterials.

7.
Proc Natl Acad Sci U S A ; 117(21): 11306-11313, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385151

RESUMO

Self-assembly is a ubiquitous process that can generate complex and functional structures via local interactions among a large set of simpler components. The ability to program the self-assembly pathway of component sets elucidates fundamental physics and enables alternative competitive fabrication technologies. Reprogrammability offers further opportunities for tuning structural and material properties but requires reversible selection from multistable self-assembling patterns, which remains a challenge. Here, we show statistical reprogramming of two-dimensional (2D), noncompact self-assembled structures by the dynamic confinement of orbitally shaken and magnetically repulsive millimeter-scale particles. Under a constant shaking regime, we control the rate of radius change of an assembly arena via moving hard boundaries and select among a finite set of self-assembled patterns repeatably and reversibly. By temporarily trapping particles in topologically identified stable states, we also demonstrate 2D reprogrammable stiffness and three-dimensional (3D) magnetic clutching of the self-assembled structures. Our reprogrammable system has prospective implications for the design of granular materials in a multitude of physical scales where out-of-equilibrium self-assembly can be realized with different numbers or types of particles. Our dynamic boundary regulation may also enable robust bottom-up control strategies for novel robotic assembly applications by designing more complex spatiotemporal interactions using mobile robots.

8.
Appl Opt ; 59(1): 180-189, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225286

RESUMO

In this work, we present the fabrication technology of a monolithically integrated photonic platform combining key components for optical coherence tomography (OCT) imaging, thereby including a photonic interferometer, a collimating lens, and a 45° reflecting mirror that directs the light from the interferometer to the collimator. The proposed integration process simplifies the fabrication of an interferometric system and inherently overcomes the complexity of costly alignment procedures while complying with the necessarily stringent optical constraints. Fabricated waveguide characterization shows total optical losses as low as 3 dB, and less than 1 dB of additional loss due to the Si 45° mirror facet. The alignment standard deviation of all components is within 15 nm. The integrated lens profile achieves a divergence angle smaller than 0.7°, which is close to that of a collimator. The proposed photonic platform provides the premise for low-cost and small-footprint single-chip OCT systems.

10.
Micromachines (Basel) ; 10(8)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404964

RESUMO

More than 200 years since the earliest scientific investigations by Young, Laplace and Plateau, liquid surface tension is still the object of thriving fundamental and applied research [...].

12.
Soft Matter ; 15(19): 3999-4007, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31032506

RESUMO

This paper reports an experimental and theoretical investigation of a cantilever beam in contact with an underlying substrate, in the presence of an intervening liquid bridge. The beam is deflected in response to the adhesive capillary forces generated by the liquid. Three main regimes of contact are observed, similarly to other elastocapillary systems already reported in the literature. We measured both the position of the liquid meniscus and the force at the beam clamp in the direction normal to the substrate, as functions of the distance between the beam clamp and the substrate. The resulting force-displacement curve is not monotonic and it exhibits hysteresis in the second regime that we could attribute to solid-solid friction at the beam tip. In the third regime, the adhesive force measured at the clamp strongly increases as the beam approaches the substrate. A 2-dimensional beam model is proposed to rationalize these measurements. This model involves several non-linearities due to geometrical constraints, and its solution with a minimum of iterations is not trivial. The model correctly reproduces the force-displacement curve under two conditions: friction is considered in the second regime, and the reaction force applied by the substrate on the beam is distributed in the third regime. These results are discussed in the context of the adhesion of setal tips involved in the terrestrial locomotion of beetles.

13.
Nature ; 554(7690): 81-85, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364873

RESUMO

Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.


Assuntos
Biomimética/métodos , Desenho de Equipamento , Locomoção , Robótica/instrumentação , Elasticidade , Rotação , Natação , Caminhada
14.
Soft Matter ; 13(41): 7595-7608, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28975956

RESUMO

We investigate the parallel assembly of two-dimensional, geometrically-closed modular target structures out of homogeneous sets of macroscopic components of varying anisotropy. The yield predicted by a chemical reaction network (CRN)-based model is quantitatively shown to reproduce experimental results over a large set of conditions. Scaling laws for parallel assembling systems are then derived from the model. By extending the validity of the CRN-based modelling, this work prompts analysis and solutions to the incompatible substructure problem.

15.
Soft Matter ; 13(2): 304-327, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27905611

RESUMO

Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research, demonstrations and developments, the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition, a broad and accessible review of the physics, material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments, and all fundamental aspects of surface patterning and conditioning, of choice, deposition and confinement of liquids, and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

16.
Nat Nanotechnol ; 12(1): 73-80, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694849

RESUMO

Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.

17.
Micromachines (Basel) ; 7(8)2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404309

RESUMO

Stochastic self-assembly provides promising means for building micro-/nano-structures with a variety of properties and functionalities. Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive nano-/micro-particles to intelligent miniaturized robots. Depending on the capabilities of the constituting modules, different approaches have been utilized for controlling and modeling these systems. In the quest of a unifying control and modeling framework and within the broader perspective of investigating how stochastic control strategies can be adapted from the centimeter-scale down to the (sub-)millimeter-scale, as well as from mechatronic to MEMS-based technology, this work presents the outcomes of our research on self-assembly during the past few years. As the first step, we leverage an experimental platform to study self-assembly of water-floating passive modules at the centimeter scale. A dedicated computational framework is developed for real-time tracking, modeling and control of the formation of specific structures. Using a similar approach, we then demonstrate controlled self-assembly of microparticles into clusters of a preset dimension in a microfluidic chamber, where the control loop is closed again through real-time tracking customized for a much faster system dynamics. Finally, with the aim of distributing the intelligence and realizing programmable self-assembly, we present a novel experimental system for fluid-mediated programmable stochastic self-assembly of active modules at the centimeter scale. The system is built around the water-floating 3-cm-sized Lily robots specifically designed to be operative in large swarms and allows for exploring the whole range of fully-centralized to fully-distributed control strategies. The outcomes of our research efforts extend the state-of-the-art methodologies for designing, modeling and controlling massively-distributed, stochastic self-assembling systems at different length scales, constituted of modules from centimetric down to sub-millimetric size. As a result, our work provides a solid milestone in structure formation through controlled self-assembly.

18.
Adv Mater ; 27(29): 4254-72, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26129857

RESUMO

Fluid bridges are ubiquitous soft structures of finite size that conform to and link the surfaces of neighboring objects. Fluid joints, the specific type of fluid bridge with at least one extremity constrained laterally, display even more pronounced reactivity and self-restoration, which make them remarkably suited for assembly, actuation, and manipulation purposes. Their peculiar surface and bulk properties place fluid joints at the rich intersection of diverse scientific interests, and foster their widespread use throughout micro- and nanotechnology. A critical survey of the mechanics and of the manifold applications of fluid bridges and joints in micro- and nanosystems is presented here, along with current challenges and multidisciplinary perspectives.


Assuntos
Nanotecnologia , Nanotecnologia/instrumentação , Propriedades de Superfície , Molhabilidade
19.
Langmuir ; 30(43): 13092-102, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25299338

RESUMO

We present an experimental study of the complete in-plane dynamics of capillary self-alignment. The two translational (shift) and single rotational (twist) in-plane modes of square millimetric transparent dies bridged to shape-matching receptor sites through a liquid meniscus were selectively excited by preset initial offsets. The entire self-alignment dynamics was simultaneously monitored over the three in-plane degrees of freedom by high-speed optical tracking of the alignment trajectories. The dynamics of the twist mode is shown to qualitatively follow the sequence of dynamic regimes also observed for the shift modes, consisting of initial transient wetting, acceleration toward, and underdamped harmonic oscillations around the equilibrium position. Systematic analysis of alignment trajectories for individually as well as simultaneously excited modes shows that, in the absence of twist offset, the dynamics of the degenerate shift modes are mutually independent. In the presence of twist offset, the three modes conversely evidence coupled dynamics, which is attributed to a synchronization mechanism affected by the wetting of the bounding surfaces. The experimental results, justified by energetic, wetting, and dynamic arguments, provide substantial benchmarks for understanding the full dynamics of the process.

20.
Nanoscale ; 6(18): 10495-9, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24842483

RESUMO

We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA