Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Cell ; : e202400027, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390850

RESUMO

BACKGOUND INFORMATION: Toxoplasma gondii has a relict plastid, the apicoplast, to which nuclear-encoded proteins are targeted after synthesis in the cytosol. Proteins exclusively found in the apicoplast use a Golgi-independent route for trafficking, while dually targeted proteins found in both the apicoplast and the mitochondrion use a Golgi-dependent route. For apicoplast targeting, N-terminal signal sequences have been shown to direct the localization of different reporters. In this study, we use chimeric proteins to dissect out the roles of N-terminal sequences and coding sequences in apicoplast localization and the choice of the trafficking route. RESULTS: We show that when the N-termini of a dually targeted protein, TgTPx1/2, or of an apicoplast protein, TgACP, are fused with the reporter protein, enhanced green fluorescent protein (eGFP) or endogenous proteins, TgSOD2, TgSOD3, TgACP, or TgTPx1/2, the chimeric proteins exhibit flexibility in apicoplast targeting depending on the coding sequences. Further, the chimeras that are localized to the apicoplast use different trafficking pathways depending on the combination of the N-terminal signals and the coding sequences. CONCLUSION AND SIGNIFICANCE: This report shows, for the first time, that in addition to the N-terminal signal sequences, targeting and trafficking signals also reside within the coding sequences of apicoplast proteins.

2.
Biol Cell ; 113(1): 58-78, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112425

RESUMO

BACKGROUND INFORMATION: Like other apicomplexan parasites, Toxoplasma gondii harbours a four-membraned endosymbiotic organelle - the apicoplast. Apicoplast proteins are nuclear encoded and trafficked to the organelle through the endoplasmic reticulum (ER). From the ER to the apicoplast, two distinct protein trafficking pathways can be used. One such pathway is the cell's secretory pathway involving the Golgi, whereas the other is a unique Golgi-independent pathway. Using different experimental approaches, many apicoplast proteins have been shown to utilize the Golgi-independent pathway, whereas a handful of reports show that a few proteins use the Golgi-dependent pathway. This has led to an emphasis towards the unique Golgi-independent pathway when apicoplast protein trafficking is discussed in the literature. Additionally, the molecular features that drive proteins to each pathway are not known. RESULTS: In this report, we systematically test eight apicoplast proteins, using a C-terminal HDEL sequence to assess the role of the Golgi in their transport. We demonstrate that dually localised proteins of the apicoplast and mitochondrion (TgSOD2, TgTPx1/2 and TgACN/IRP) are trafficked through the Golgi, whereas proteins localised exclusively to the apicoplast are trafficked independent of the Golgi. Mutants of the dually localised proteins that localised exclusively to the apicoplast also showed trafficking through the Golgi. Phylogenetic analysis of TgSOD2, TgTPx1/2 and TgACN/IRP suggested that the evolutionary origins of TgSOD2 and TgTPx1/2 lie in the mitochondrion, whereas TgACN/IRP appears to have originated from the apicoplast. CONCLUSIONS AND SIGNIFICANCE: Collectively, with these results, for the first time, we establish that the driver of the Golgi-dependent trafficking route to the apicoplast is the dual localisation of the protein to the apicoplast and the mitochondrion.


Assuntos
Apicoplastos/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Transporte Proteico , Toxoplasma/metabolismo
3.
PeerJ ; 7: e7215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346496

RESUMO

Toxoplasma gondii harbors two endosymbiotic organelles: a relict plastid, the apicoplast, and a mitochondrion. The parasite expresses an antioxidant protein, thioredoxin peroxidase 1/2 (TgTPx1/2), that is dually targeted to these organelles. Nuclear-encoded proteins such as TgTPx1/2 are trafficked to the apicoplast via a secretory route through the endoplasmic reticulum (ER) and to the mitochondrion via a non-secretory pathway comprising of translocon uptake. Given the two distinct trafficking pathways for localization to the two organelles, the signals in TgTPx1/2 for this dual targeting are open areas of investigation. Here we show that the signals for apicoplast and mitochondrial trafficking lie in the N-terminal 50 amino acids of the protein and are overlapping. Interestingly, mutational analysis of the overlapping stretch shows that despite this overlap, the signals for individual organellar uptake can be easily separated. Further, deletions in the N-terminus also reveal a 10 amino acid stretch that is responsible for targeting the protein from punctate structures surrounding the apicoplast into the organelle itself. Collectively, results presented in this report suggest that an ambiguous signal sequence for organellar uptake combined with a hierarchy of recognition by the protein trafficking machinery drives the dual targeting of TgTPx1/2.

4.
FEBS Open Bio ; 8(11): 1746-1762, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30410855

RESUMO

Glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) is an antioxidant enzyme trafficked to the apicoplast, a secondary endosymbiotic organelle, in Plasmodium falciparum. Apicoplast trafficking signals usually consist of N-terminal signal and transit peptides, but the trafficking signal of PfTPxGl appears to exhibit important differences. As transfection is a protracted process in P. falciparum, we expressed the N terminus of PfTPxGl as a GFP fusion protein in a related apicomplexan, Toxoplasma gondii, in order to dissect its trafficking signals. We show that PfTPxGl possesses an N-terminal signal anchor that takes the protein to the endoplasmic reticulum in Toxoplasma-this is the first step in the apicoplast targeting pathway. We dissected the residues important for endomembrane system uptake, membrane anchorage, orientation, spacing, and cleavage. Protease protection assays and fluorescence complementation revealed that the C terminus of the protein lies in the ER lumen, a topology that is proposed to be retained in the apicoplast. Additionally, we examined one mutant, responsible for altered PfTPxGl targeting in Toxoplasma, in Plasmodium. This study has demonstrated that PfTPxGl belongs to an emergent class of proteins that possess signal anchors, unlike the canonical bipartite targeting signals employed for the trafficking of luminal apicoplast proteins. This work adds to the mounting evidence that the signals involved in the targeting of apicoplast membrane proteins may not be as straightforward as those of luminal proteins, and also highlights the usefulness of T. gondii as a heterologous system in certain aspects of this study, such as reducing screening time and facilitating the verification of membrane topology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA