RESUMO
BACKGROUND: IL-33 is a type 2 inflammatory cytokine that is elevated in the esophageal epithelium of eosinophilic esophagitis (EoE) subjects. We previously developed a mouse model of EoE dependent on constitutive overexpression of IL-33 from the esophageal epithelium (EoE33). OBJECTIVE: Our objective was to develop an inducible, IL-33-dependent model of EoE and examine induction of EoE-associated pathology. METHODS: We utilized a tetracycline-inducible system to express IL-33 in the esophagus by generating 2 transgenic mice. The first (iSophagus) expresses a reverse tetracycline transactivator from the esophageal epithelium. The second (TRE33) features a tetracycline response element driving expression of IL-33. When crossed, these mice generate an inducible model of EoE (iEoE33). Mice were administered doxycycline-infused chow for up to 2 weeks. Cytokines were assessed by ELISA or bead-based multiplex analysis. T cells were assessed by flow cytometry. Pathology was assessed by histology and immunohistochemistry for IL-33, eosinophil peroxidase, CD4, and Ki-67. iEoE33 was treated with steroids and crossed with IL-13-/- mice. RESULTS: Doxycycline-treated iEoE33 mice demonstrated expression of IL-33 in the esophageal epithelium, and esophageal pathology including eosinophilia, CD4+ cell infiltrate, basal zone hyperplasia, and dilated intercellular spaces. These findings became pronounced on day 7 of induction, were accompanied by weight loss and esophageal thickening, and were steroid responsive and IL-13 dependent. CONCLUSION: Inducible IL-33 expression in the esophageal epithelium elicited features pathognomonic of EoE. iEoE33 enables investigation of EoE disease mechanisms as well as initiation, progression, and resolution.
RESUMO
BACKGROUND: Oral consumption of peanut products early in life reduces the incidence of peanut allergy in children. However, little is known about whether exposure via the oral mucosa alone is sufficient or whether the gastrointestinal tract must be engaged to protect against peanut allergy. OBJECTIVE: We used a mouse model and examined the effects of peanut allergen administration to only the oral cavity on allergy development induced by environmental exposure. METHODS: Naive BALB/c mice were administered peanut flour (PNF) sublingually, followed by epicutaneous exposure to PNF to mimic a human condition. The sublingual volume was adjusted to engage only the oral cavity and prevent it from reaching the esophagus or gastrointestinal tract. The efficacy was evaluated by examining the anaphylactic response, antibody titers, and T follicular helper cells. RESULTS: The mice exposed epicutaneously to PNF developed peanut allergy, as demonstrated by increased plasma levels of peanut-specific IgE and the manifestation of acute systemic anaphylaxis following intraperitoneal challenge with peanut extract. The development of peanut allergy was suppressed when mice had been given PNF sublingually before epicutaneous exposure. There were fewer T follicular helper cells in the skin-draining lymph nodes of mice that received sublingual PNF than in the mice that received PBS. Suppression of IgE production was observed with sublingual PNF at 1/10 of the intragastric PNF dose. CONCLUSION: Administration of peanut allergens only to the oral cavity effectively prevents the development of peanut allergy. The capacity of the oral mucosa to promote immunologic tolerance needs to be evaluated further to prevent food allergy.
Assuntos
Alérgenos , Arachis , Imunoglobulina E , Camundongos Endogâmicos BALB C , Mucosa Bucal , Hipersensibilidade a Amendoim , Animais , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/prevenção & controle , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Mucosa Bucal/imunologia , Camundongos , Arachis/imunologia , Alérgenos/imunologia , Feminino , Modelos Animais de Doenças , Anafilaxia/prevenção & controle , Anafilaxia/imunologia , Humanos , Administração Sublingual , Células T Auxiliares Foliculares/imunologiaRESUMO
Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.
Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Pulmão , AntígenosRESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE: We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS: We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS: EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS: IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.
Assuntos
Esofagite Eosinofílica , Interleucina-13 , Interleucina-33 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Eosinófilos/imunologia , Mucosa Esofágica/patologia , Mucosa Esofágica/imunologia , Esôfago/patologia , Esôfago/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-33/genética , Interleucina-33/imunologia , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos TransgênicosRESUMO
BACKGROUNDObesity is a multifactorial disease with adverse health implications including insulin resistance (IR). In patients with obesity, the presence of high circulating levels of leptin, deemed hyperleptinemia, is associated with IR. Recent data in mice with diet-induced obesity (DIO) show that a partial reduction in leptin levels improves IR. Additional animal studies demonstrate that IL-4 decreases leptin levels. In rodents, resident adipose tissue eosinophils (AT-EOS) are the main source of IL-4 and are instrumental in maintaining metabolic homeostasis. A marked reduction in AT-EOS content is observed in animal models of DIO. These observations have not been explored in humans.METHODSWe analyzed AT from individuals with obesity and age-matched lean counterparts for AT-EOS content, IL-4, circulating leptin levels, and measures of IR.RESULTSOur results show that individuals with obesity (n = 15) had a significant reduction in AT-EOS content (P < 0.01), decreased AT-IL-4 gene expression (P = 0.02), and decreased IL-4 plasma levels (P < 0.05) in addition to expected IR (P < 0.001) and hyperleptinemia (P < 0.01) compared with lean subjects (n = 15). AT-EOS content inversely correlated with BMI (P = 0.002) and IR (P = 0.005). Ex vivo AT explants and in vitro cell culture of primary human mature adipocytes exposed to either IL-4 or EOS conditioned media produced less leptin (P < 0.05).CONCLUSIONOur results suggest that IL-4 acts as a link between EOS, AT, and leptin production. Future studies exploring this interaction may identify an avenue for the treatment of obesity and its complications through amelioration of hyperleptinemia.TRIAL REGISTRATIONClinicaltrials.gov NCT02378077 & NCT04234295.
Assuntos
Resistência à Insulina , Leptina , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Eosinófilos/metabolismo , Interleucina-4/metabolismo , Leptina/metabolismo , Obesidade/metabolismoRESUMO
BACKGROUND: Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE: Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS: Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS: At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS: ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.
Assuntos
Asma , Interleucina-33 , Camundongos , Animais , Humanos , Interleucina-33/metabolismo , Camundongos Knockout , Pulmão , Epitélio , Acetilcolina , Alérgenos , Colinérgicos , Receptores Colinérgicos/metabolismoRESUMO
PURPOSE OF REVIEW: The prevalence and incidence of allergic disease have been rising in Westernized countries since the twentieth century. Increasingly, evidence suggests that damage to the epithelium initiates and shapes innate and adaptive immune responses to external antigens. The objective of this review is to examine the role of detergents as a potential risk factor for developing allergic disease. RECENT FINDINGS: Herein, we identify key sources of human detergent exposure. We summarize the evidence suggesting a possible role for detergents and related chemicals in initiating epithelial barrier dysfunction and allergic inflammation. We primarily focus on experimental models of atopic dermatitis, asthma, and eosinophilic esophagitis, which show compelling associations between allergic disease and detergent exposure. Mechanistic studies suggest that detergents disrupt epithelial barrier integrity through their effects on tight junction or adhesion molecules and promote inflammation through epithelial alarmin release. Environmental exposures that disrupt or damage the epithelium may account for the increasing rates of allergic disease in genetically susceptible individuals. Detergents and related chemical compounds represent possible modifiable risk factors for the development or exacerbation of atopy.
Assuntos
Asma , Dermatite Atópica , Esofagite Eosinofílica , Humanos , Detergentes/efeitos adversos , InflamaçãoRESUMO
BACKGROUND: Food-specific immunoglobulin G4 (FS-IgG4) is associated with eosinophilic esophagitis (EoE); however, it is not clear whether production is limited to the esophagus. AIMS: To assess FS-IgG4 levels in the upper gastrointestinal tract and plasma and compare these with endoscopic disease severity, tissue eosinophil counts, and patient-reported symptoms. METHODS: We examined prospectively banked plasma, throat swabs, and upper gastrointestinal biopsies (esophagus, gastric antrum, and duodenum) from control (n = 15), active EoE (n = 24), and inactive EoE (n = 8) subjects undergoing upper endoscopy. Patient-reported symptoms were assessed using the EoE symptom activity index (EEsAI). Endoscopic findings were evaluated using the EoE endoscopic reference score (EREFS). Peak eosinophils per high-power field (eos/hpf) were assessed from esophageal biopsies. Biopsy homogenates and throat swabs were normalized for protein content and assessed for FS-IgG4 to milk, wheat, and egg. RESULTS: Median FS-IgG4 for milk and wheat was significantly increased in the plasma, throat swabs, esophagus, stomach, and duodenum of active EoE subjects compared to controls. No significant differences for milk- or wheat-IgG4 were observed between active and inactive EoE subjects. Among the gastrointestinal sites sampled, FS-IgG4 levels were highest in the esophagus. Esophageal FS-IgG4 for all foods correlated significantly across all sites sampled (r ≥ 0.59, p < 0.05). Among subjects with EoE, esophageal FS-IgG4 correlated significantly with peak eos/hpf (milk and wheat) and total EREFS (milk). EEsAI scores and esophageal FS-IgG4 levels did not correlate. CONCLUSIONS: Milk and wheat FS-IgG4 levels are elevated in plasma and throughout the upper gastrointestinal tract in EoE subjects and correlate with endoscopic findings and esophageal eosinophilia.
Assuntos
Esofagite Eosinofílica , Hipersensibilidade Alimentar , Imunoglobulina G , Trato Gastrointestinal Superior , Humanos , Imunoglobulina G/sangue , Estudos Prospectivos , Estudos de Casos e Controles , Eosinófilos , Endoscopia Gastrointestinal , Biomarcadores , Trato Gastrointestinal Superior/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , IdosoRESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic allergic disease associated with type 2 inflammation and epithelial barrier dysfunction. The etiology is unknown, however, genetic heritability studies suggest environmental factors play a key role in pathogenesis. Detergents, such as sodium dodecyl sulfate (SDS), are common ingredients in household products such as dish soap and toothpaste. We hypothesized detergent exposure decreases epithelial barrier function and induces esophageal inflammation. METHODS: Immortalized esophageal epithelial cells (EPC2) were cultured in air-liquid interface (ALI) and exposed to SDS. Barrier function/activity was assessed by transepithelial electrical resistance (TEER), FITC-dextran flux, and RT-PCR. Additionally, SDS-treated mouse esophageal organoids were evaluated for morphology. To investigate the effects of SDS in vivo, mice were treated with 0.5% SDS in drinking water for 14 days. Esophagi were assessed by gross morphology, histopathology, protein expression, and bulk RNA sequencing. RESULTS: When EPC2 cells were exposed to SDS (5 µg/ml) for 96 h, TEER decreased (p = 0.03), and FITC-dextran flux increased (p = 0.0002). mRNA expression of IL-33 increased 4.5-fold (p = 0.02) at 6 h and DSG1 decreased (p < 0.0001) by 72 h. Disrupted epithelial integrity was noted in SDS-treated esophageal organoids. When mice were exposed to SDS, they showed increased esophageal width, chemokine, and metalloprotease levels. Mice treated with SDS also showed increased IL-33 protein expression, basal zone hyperplasia, CD4+ cell infiltration, and esophageal eosinophilia. RNA sequencing revealed upregulation of immune response pathway genes. CONCLUSION: Exposure to SDS decreases esophageal barrier integrity, stimulates IL-33 production, and promotes epithelial hyperplasia and tissue eosinophilia. Detergents may be a key environmental trigger in EoE pathogenesis.
Assuntos
Detergentes , Esofagite Eosinofílica , Animais , Camundongos , Detergentes/efeitos adversos , Células Epiteliais/metabolismo , Hiperplasia/patologia , Inflamação/metabolismo , Interleucina-33/metabolismoRESUMO
Eosinophilic esophagitis (EoE) is a chronic allergy-mediated condition with an increasing incidence in both children and adults. Despite EoE's strong impact on human health and welfare, there is a large unmet need for treatments with only one recently FDA-approved medication for EoE. The goal of this study was to establish swine as a relevant large animal model for translational biomedical research in EoE with the potential to facilitate development of therapeutics. We recently showed that after intraperitoneal sensitization and oral challenge with the food allergen hen egg white protein (HEWP), swine develop esophageal eosinophilia-a hallmark of human EoE. Herein, we used a similar sensitization and challenge treatment and evaluated immunological and pathological markers associated with human EoE. Our data demonstrate that the incorporated sensitization and challenge treatment induces (i) a systemic T-helper 2 and IgE response, (ii) a local expression of eotaxin-1 and other allergy-related immune markers, (iii) esophageal eosinophilia (>15â eosinophils/0.24â mm2), and (iv) esophageal endoscopic findings including linear furrows and white exudates. Thereby, we demonstrate that our sensitization and oral challenge protocol not only induces the underlying immune markers but also the micro- and macro-pathological hallmarks of human EoE. This swine model for EoE represents a novel relevant large animal model that can drive translational biomedical research to develop urgently needed treatment strategies for EoE.
RESUMO
INTRODUCTION: We aimed to assess the diagnostic utility of eosinophil peroxidase (EPX) staining on Cytosponge (CS) samples in eosinophilic esophagitis (EoE). METHODS: Esophageal biopsy (BX) samples from adult subjects with EoE were assessed using peak eosinophils per high-power field (eos/hpf), EPX, and the EoE histologic scoring system. EPX staining and eos/hpf were compared (BX vs CS). RESULTS: CS EPX positivity correlated with eos/hpf (CS [ r = 0.82, P < 0.0001]; BX [ r = 0.65, P < 0.0001]) and EoE histologic scoring system (grade [ r = 0.62, P < 0.00001]; stage [ r = 0.61, P < 0.0001]). CS EPX identified subjects with active EoE (area under the curve = 0.86, P < 0.0001). DISCUSSION: The correlation of CS EPX with eosinophilic inflammation and histologic disease severity supports its diagnostic utility in EoE.
Assuntos
Esofagite Eosinofílica , Adulto , Humanos , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/patologia , Peroxidase de Eosinófilo , Eosinófilos/patologia , Coloração e RotulagemRESUMO
Eosinophils are rare white blood cells that are recruited from circulation to accumulate in the lung in mouse models of allergic respiratory inflammation. In hematoxylin-eosin (HE) stained lungs, eosinophils may be difficult to detect despite their bright eosin staining in the secondary granules. For this reason, antibody-mediated detection of eosinophils is preferable for specific and clearer identification of these cells. Moreover, eosinophils may degranulate, releasing their granule proteins into surrounding tissue, and remnants of cytolysed cells cannot be detected by HE staining. The methods here demonstrate the use of eosinophil-specific anti-mouse antibodies to detect eosinophil granule proteins in formalin-fixed cells both in situ in paraffin-embedded lungs, as well as in cytospin preparations from the lung. These antibody staining techniques enable either colorimetric or fluorescence imaging of eosinophils or their granule proteins with the potential for additional antibodies to be added for detection of multiple molecules.
Assuntos
Asma/imunologia , Eosinófilos/imunologia , Imuno-Histoquímica/métodos , Pulmão/imunologia , Hipersensibilidade Respiratória/imunologia , Coloração e Rotulagem/métodos , Alérgenos/administração & dosagem , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Biomarcadores/metabolismo , Proteína Básica Maior de Eosinófilos/imunologia , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/imunologia , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/patologia , Formaldeído/química , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microtomia/métodos , Inclusão em Parafina/métodos , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Fixação de Tecidos/métodosRESUMO
Eosinophilic esophagitis (EoE) is an antigen-driven disease associated with epithelial barrier dysfunction and chronic type 2 inflammation. Eosinophils are the defining feature of EoE histopathology but relatively little is known about their role in disease onset and progression. Classically defined as destructive, end-stage effector cells, eosinophils (a resident leukocyte in most of the GI tract) are increasingly understood to play roles in local immunity, tissue homeostasis, remodeling, and repair. Indeed, asymptomatic esophageal eosinophilia is observed in IgE-mediated food allergy. Interestingly, EoE is a potential complication of oral immunotherapy (OIT) for food allergy. However, we recently found that patients with peanut allergy may have asymptomatic esophageal eosinophilia at baseline and that peanut OIT induces transient esophageal eosinophilia in most subjects. This is seemingly at odds with multiple studies which have shown that EoE disease severity correlates with tissue eosinophilia. Herein, we review the potential role of eosinophils in EoE at different stages of disease pathogenesis. Based on current literature we suggest the following: (1) eosinophils are recruited to the esophagus as a homeostatic response to epithelial barrier disruption; (2) eosinophils mediate barrier-protective activities including local antibody production, mucus production and epithelial turnover; and (3) when type 2 inflammation persists, eosinophils promote fibrosis.