Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 76(Pt 4): 313-325, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32254055

RESUMO

Cryo-electron microscopy (cryo-EM) has rapidly expanded with the introduction of direct electron detectors, improved image-processing software and automated image acquisition. Its recent adoption by industry, particularly in structure-based drug design, creates new requirements in terms of reliability, reproducibility and throughput. In 2016, Thermo Fisher Scientific (then FEI) partnered with the Medical Research Council Laboratory of Molecular Biology, the University of Cambridge Nanoscience Centre and five pharmaceutical companies [Astex Pharmaceuticals, AstraZeneca, GSK, Sosei Heptares and Union Chimique Belge (UCB)] to form the Cambridge Pharmaceutical Cryo-EM Consortium to share the risks of exploring cryo-EM for early-stage drug discovery. The Consortium expanded with a second Themo Scientific Krios Cryo-EM at the University of Cambridge Department of Materials Science and Metallurgy. Several Consortium members have set up in-house facilities, and a full service cryo-EM facility with Krios and Glacios has been created with the Electron Bio-Imaging Centre for Industry (eBIC for Industry) at Diamond Light Source (DLS), UK. This paper will cover the lessons learned during the setting up of these facilities, including two Consortium Krios microscopes and preparation laboratories, several Glacios microscopes at Consortium member sites, and a Krios and Glacios at eBIC for Industry, regarding site evaluation and selection for high-resolution cryo-EM microscopes, the installation process, scheduling, the operation and maintenance of the microscopes and preparation laboratories, and image processing.


Assuntos
Microscopia Crioeletrônica/instrumentação , Processamento de Imagem Assistida por Computador , Laboratórios/organização & administração , Instalações Industriais e de Manufatura/organização & administração , Descoberta de Drogas , Indústria Farmacêutica , Reprodutibilidade dos Testes , Universidades
2.
IUCrJ ; 4(Pt 5): 678-694, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989723

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Šis presented as an example of the use of the ABC-4D procedure.

3.
Nat Commun ; 7: 11387, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435188

RESUMO

The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.


Assuntos
Capsídeo/metabolismo , Sepse Neonatal/virologia , Parechovirus/fisiologia , Infecções por Picornaviridae/virologia , Sequência de Aminoácidos , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Parechovirus/química , Parechovirus/genética , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Montagem de Vírus
4.
Nature ; 523(7560): 366-9, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26061770

RESUMO

Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.


Assuntos
Nucleossomos/química , Nucleossomos/virologia , Spumavirus/metabolismo , Integração Viral , Substituição de Aminoácidos , Sítios de Ligação/genética , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Genoma/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Integrases/metabolismo , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/ultraestrutura , Multimerização Proteica , Recombinação Genética , Spumavirus/química , Spumavirus/genética , Spumavirus/ultraestrutura
5.
Sci Rep ; 5: 10317, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26068909

RESUMO

Large datasets are emerging in many fields of image processing including: electron microscopy, light microscopy, medical X-ray imaging, astronomy, etc. Novel computer-controlled instrumentation facilitates the collection of very large datasets containing thousands of individual digital images. In single-particle cryogenic electron microscopy ("cryo-EM"), for example, large datasets are required for achieving quasi-atomic resolution structures of biological complexes. Based on the collected data alone, large datasets allow us to precisely determine the statistical properties of the imaging sensor on a pixel-by-pixel basis, independent of any "a priori" normalization routinely applied to the raw image data during collection ("flat field correction"). Our straightforward "a posteriori" correction yields clean linear images as can be verified by Fourier Ring Correlation (FRC), illustrating the statistical independence of the corrected images over all spatial frequencies. The image sensor characteristics can also be measured continuously and used for correcting upcoming images.

6.
Proc Natl Acad Sci U S A ; 108(14): 5771-6, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21436027

RESUMO

The restriction factor Fv1 confers resistance to murine leukemia virus (MLV), blocking progression of the viral life cycle after reverse transcription, but before integration into the host chromosome. It is known that the specificity of restriction is determined by both the restriction factor and the viral capsid (CA), but a direct interaction between Fv1 and MLV CA has not yet been demonstrated. With the development of a previously unexplored method for in vitro polymerization of MLV CA, it has now been possible to display a binding interaction between Fv1 and MLV CA. C-terminally His-tagged CA molecules were assembled on Ni-chelating lipid nanotubes, and analysis by electron microscopy revealed the formation of a regular lattice. Comparison of binding data with existing restriction data confirmed the specificity of the binding interaction, with multiple positions of both Fv1 and CA shown to influence binding specificity.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Leucemia Murina/metabolismo , Nanotubos/virologia , Ligação Proteica , Proteínas/metabolismo , Animais , Proteínas do Capsídeo/genética , Primers do DNA/genética , Processamento de Imagem Assistida por Computador , Metabolismo dos Lipídeos , Camundongos , Microscopia Eletrônica , Mutagênese , Nanotubos/ultraestrutura , Plasmídeos/genética
7.
Structure ; 15(4): 441-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17437716

RESUMO

gp130 is a shared signal-transducing membrane-associated receptor for several hematopoietic cytokines. The 30 A resolution cryo-electron microscopy (cryo-EM) structure of the Interleukin 11(IL-11)-IL-11 Receptor-gp130 extracellular complex reveals the architecture and dynamics of this gp130-containing signaling complex. Normal-mode analysis reveals a repertoire of conformational changes that could function in signal triggering. This suggests a concerted mechanism of signaling involving all the components of the complex. This could provide a general mechanism of signal transfer for cytokines utilizing the JAK-STAT signaling cascade.


Assuntos
Receptor gp130 de Citocina/metabolismo , Interleucina-11/fisiologia , Receptores de Interleucina-11/metabolismo , Transdução de Sinais/fisiologia , Animais , Microscopia Crioeletrônica , Receptor gp130 de Citocina/química , Interleucina-11/química , Camundongos , Ligação Proteica , Receptores de Interleucina-11/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA