Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cell Sci ; 134(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448002

RESUMO

Custom-built microscopes often require control of multiple hardware devices and precise hardware coordination. It is also desirable to have a solution that is scalable to complex systems and that is translatable between components from different manufacturers. Here we report Python-Microscope, a free and open-source Python library for high-performance control of arbitrarily complex and scalable custom microscope systems. Python-Microscope offers simple to use Python-based tools, abstracting differences between physical devices by providing a defined interface for different device types. Concrete implementations are provided for a range of specific hardware, and a framework exists for further expansion. Python-Microscope supports the distribution of devices over multiple computers while maintaining synchronisation via highly precise hardware triggers. We discuss the architectural features of Python-Microscope that overcome the performance problems often raised against Python and demonstrate the different use cases that drove its design: integration with user-facing projects, namely the Microscope-Cockpit project; control of complex microscopes at high speed while using the Python programming language; and use as a microscope simulation tool for software development.


Assuntos
Software , Simulação por Computador , Biblioteca Gênica
2.
PLoS Pathog ; 17(6): e1009666, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143858

RESUMO

Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.


Assuntos
Flagelos/metabolismo , Cinesinas/metabolismo , Leishmania mexicana/patogenicidade , Leishmaniose/metabolismo , Virulência/fisiologia , Animais , Proliferação de Células , Leishmania mexicana/fisiologia , Camundongos , Morfogênese , Proteínas de Protozoários/metabolismo , Psychodidae
3.
STAR Protoc ; 2(2): 100525, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027483

RESUMO

This protocol describes how to culture, image, and determine the nuclear position of a fluorescently tagged DNA locus in the 3D nucleoplasm of fixed Saccharomyces cerevisiae cells. Here, we propose a manual scoring method based on widefield images and an automated method based on 3D-SIM images. Yeast culture conditions have to be followed meticulously to get the best biological response in a given environment. For complete details on the use and execution of this protocol, please refer to Forey et al. (2020).


Assuntos
Núcleo Celular/química , DNA , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Saccharomyces cerevisiae , DNA/análise , DNA/química , DNA/metabolismo , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Sondas Moleculares/análise , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia
4.
Wellcome Open Res ; 6: 76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37283605

RESUMO

We have developed "Microscope-Cockpit" (Cockpit), a highly adaptable open source user-friendly Python-based Graphical User Interface (GUI) environment for precision control of both simple and elaborate bespoke microscope systems. The user environment allows next-generation near instantaneous navigation of the entire slide landscape for efficient selection of specimens of interest and automated acquisition without the use of eyepieces. Cockpit uses "Python-Microscope" (Microscope) for high-performance coordinated control of a wide range of hardware devices using open source software. Microscope also controls complex hardware devices such as deformable mirrors for aberration correction and spatial light modulators for structured illumination via abstracted device models. We demonstrate the advantages of the Cockpit platform using several bespoke microscopes, including a simple widefield system and a complex system with adaptive optics and structured illumination. A key strength of Cockpit is its use of Python, which means that any microscope built with Cockpit is ready for future customisation by simply adding new libraries, for example machine learning algorithms to enable automated microscopy decision making while imaging.

5.
BMC Biol ; 16(1): 116, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30336771

RESUMO

BACKGROUND: Upon maturation in the bone marrow, polyploid megakaryocytes elongate very long and thin cytoplasmic branches called proplatelets. Proplatelets enter the sinusoids blood vessels in which platelets are ultimately released. Microtubule dynamics, bundling, sliding, and coiling, drive these dramatic morphological changes whose regulation remains poorly understood. Microtubule properties are defined by tubulin isotype composition and post-translational modification patterns. It remains unknown whether microtubule post-translational modifications occur in proplatelets and if so, whether they contribute to platelet formation. RESULTS: Here, we show that in proplatelets from mouse megakaryocytes, microtubules are both acetylated and polyglutamylated. To bypass the difficulties of working with differentiating megakaryocytes, we used a cell model that allowed us to test the functions of these modifications. First, we show that α2bß3integrin signaling in D723H cells is sufficient to induce ß1tubulin expression and recapitulate the specific microtubule behaviors observed during proplatelet elongation and platelet release. Using this model, we found that microtubule acetylation and polyglutamylation occur with different spatio-temporal patterns. We demonstrate that microtubule acetylation, polyglutamylation, and ß1tubulin expression are mandatory for proplatelet-like elongation, swelling formation, and cytoplast severing. We discuss the functional importance of polyglutamylation of ß1tubulin-containing microtubules for their efficient bundling and coiling during platelet formation. CONCLUSIONS: We characterized and validated a powerful cell model to address microtubule behavior in mature megakaryocytes, which allowed us to demonstrate the functional importance of microtubule acetylation and polyglutamylation for platelet release. Furthermore, we bring evidence of a link between the expression of a specific tubulin isotype, the occurrence of microtubule post-translational modifications, and the acquisition of specific microtubule behaviors. Thus, our findings could widen the current view of the regulation of microtubule behavior in cells such as osteoclasts, spermatozoa, and neurons, which express distinct tubulin isotypes and display specific microtubule activities during differentiation.


Assuntos
Plaquetas/citologia , Megacariócitos/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Plaquetas/metabolismo , Megacariócitos/citologia , Camundongos
6.
J Cell Sci ; 129(18): 3449-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27505886

RESUMO

Bone resorption by osteoclasts is mediated by a typical adhesion structure called the sealing zone or actin ring, whose architecture is based on a belt of podosomes. The molecular mechanisms driving podosome organization into superstructures remain poorly understood to date, in particular at the osteoclast podosome belt. We performed proteomic analyses in osteoclasts and found that the adaptor protein tensin 3 is a partner of Dock5, a Rac exchange factor necessary for podosome belt formation and bone resorption. Expression of tensin 3 and Dock5 concomitantly increase during osteoclast differentiation. These proteins associate with the osteoclast podosome belt but not with individual podosomes, in contrast to vinculin. Super-resolution microscopy revealed that, even if they colocalize in the x-y plane of the podosome belt, Dock5 and tensin 3 differentially localize relative to vinculin in the z-axis. Tensin 3 increases Dock5 exchange activity towards Rac, and suppression of tensin 3 in osteoclasts destabilizes podosome organization, leading to delocalization of Dock5 and a severe reduction in osteoclast activity. Our results suggest that Dock5 and tensin 3 cooperate for osteoclast activity, to ensure the correct organization of podosomes.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Osteoclastos/metabolismo , Podossomos/metabolismo , Tensinas/metabolismo , Animais , Reabsorção Óssea/patologia , Inativação Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Células RAW 264.7 , Tensinas/química , Vinculina/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
7.
Nat Commun ; 7: 12248, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27461529

RESUMO

Live-cell imaging has revealed unexpected features of gene expression. Here using improved single-molecule RNA microscopy, we show that synthesis of HIV-1 RNA is achieved by groups of closely spaced polymerases, termed convoys, as opposed to single isolated enzymes. Convoys arise by a Mediator-dependent reinitiation mechanism, which generates a transient but rapid succession of polymerases initiating and escaping the promoter. During elongation, polymerases are spaced by few hundred nucleotides, and physical modelling suggests that DNA torsional stress may maintain polymerase spacing. We additionally observe that the HIV-1 promoter displays stochastic fluctuations on two time scales, which we refer to as multi-scale bursting. Each time scale is regulated independently: Mediator controls minute-scale fluctuation (convoys), while TBP-TATA-box interaction controls sub-hour fluctuations (long permissive/non-permissive periods). A cellular promoter also produces polymerase convoys and displays multi-scale bursting. We propose that slow, TBP-dependent fluctuations are important for phenotypic variability of single cells.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Imagem Individual de Molécula/métodos , Transcrição Gênica , Sequência de Bases , Sobrevivência Celular , Produtos do Gene tat , HIV-1/genética , Células HeLa , Humanos , Cinética , Modelos Biológicos , Regiões Promotoras Genéticas/genética , RNA/metabolismo , TATA Box/genética , Proteína de Ligação a TATA-Box/metabolismo
8.
Nat Commun ; 6: 6227, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686881

RESUMO

In vertebrates, haematopoietic stem/progenitor cells (HSPCs) first emerge in the aorta-gonad-mesonephros (AGM) before colonizing transitory and subsequently definitive haematopoietic organs allowing haematopoiesis throughout adult life. Here we identify an unexpected primitive macrophage population accumulated in the dorsal mesenteric mesoderm surrounding the dorsal aorta of the human embryo and study its function in the transparent zebrafish embryo. Our study reveals dynamic interactions occurring between the HSPCs and primitive macrophages in the AGM. Specific chemical and inducible genetic depletion of macrophages or inhibition of matrix metalloproteinases (Mmps) leads to an accumulation of HSPCs in the AGM and a decrease in the colonization of haematopoietic organs. Finally, in vivo zymography demonstrates the function of primitive macrophages in extracellular matrix degradation, which allows HSPC migration through the AGM stroma, their intravasation, leading to the colonization of haematopoietic organs and the establishment of definitive haematopoiesis.


Assuntos
Aorta/embriologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Células-Tronco/citologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Biologia do Desenvolvimento , Matriz Extracelular/metabolismo , Gônadas/embriologia , Humanos , Macrófagos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mesonefro/embriologia , Microscopia de Fluorescência , Peixe-Zebra
9.
Mol Cell ; 56(4): 580-94, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457167

RESUMO

Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/fisiologia , Inativação Gênica , Heterocromatina/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Núcleo Celular/metabolismo , Células Cultivadas , Centrômero/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Embrionárias/fisiologia , Loci Gênicos , Histonas/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Repetições de Microssatélites , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteínas Repressoras , Ubiquitina-Proteína Ligases , DNA Metiltransferase 3B
10.
Mol Cell ; 54(3): 485-99, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24703951

RESUMO

Polycomb group (PcG) proteins dynamically define cellular identities through epigenetic repression of key developmental genes. PcG target gene repression can be stabilized through the interaction in the nucleus at PcG foci. Here, we report the results of a high-resolution microscopy genome-wide RNAi screen that identifies 129 genes that regulate the nuclear organization of Pc foci. Candidate genes include PcG components and chromatin factors, as well as many protein-modifying enzymes, including components of the SUMOylation pathway. In the absence of SUMO, Pc foci coagulate into larger aggregates. Conversely, loss of function of the SUMO peptidase Velo disperses Pc foci. Moreover, SUMO and Velo colocalize with PcG proteins at PREs, and Pc SUMOylation affects its chromatin targeting, suggesting that the dynamic regulation of Pc SUMOylation regulates PcG-mediated silencing by modulating the kinetics of Pc binding to chromatin as well as its ability to form Polycomb foci.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Análise por Conglomerados , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Ontologia Genética , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Fenótipo , Ligação Proteica , Transporte Proteico , Interferência de RNA , Sumoilação
11.
Proc Natl Acad Sci U S A ; 106(10): 3812-7, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19234129

RESUMO

Genome function in higher eukaryotes involves major changes in the spatial organization of the chromatin fiber. Nevertheless, our understanding of chromatin folding is remarkably limited. Polymer models have been used to describe chromatin folding. However, none of the proposed models gives a satisfactory explanation of experimental data. In particularly, they ignore that each chromosome occupies a confined space, i.e., the chromosome territory. Here, we present a polymer model that is able to describe key properties of chromatin over length scales ranging from 0.5 to 75 Mb. This random loop (RL) model assumes a self-avoiding random walk folding of the polymer backbone and defines a probability P for 2 monomers to interact, creating loops of a broad size range. Model predictions are compared with systematic measurements of chromatin folding of the q-arms of chromosomes 1 and 11. The RL model can explain our observed data and suggests that on the tens-of-megabases length scale P is small, i.e., 10-30 loops per 100 Mb. This is sufficient to enforce folding inside the confined space of a chromosome territory. On the 0.5- to 3-Mb length scale chromatin compaction differs in different subchromosomal domains. This aspect of chromatin structure is incorporated in the RL model by introducing heterogeneity along the fiber contour length due to different local looping probabilities. The RL model creates a quantitative and predictive framework for the identification of nuclear components that are responsible for chromatin-chromatin interactions and determine the 3-dimensional organization of the chromatin fiber.


Assuntos
Cromatina/química , Fibroblastos/citologia , Interfase , Conformação de Ácido Nucleico , Células Cultivadas , Feminino , Humanos , Modelos Moleculares
12.
Adv Genet ; 61: 45-66, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18282502

RESUMO

Genome regulation takes place at different hierarchically interconnected levels: the DNA sequence level, the chromatin level, and the three-dimensional (3D) organization of the nucleus. Polycomb group (PcG) proteins are silencers that regulate transcription at all these three levels. They are targeted to specific sequences in the genome, contributing to maintain cellular identity. Recent research reveals that PcG proteins may be important actors at the level of the nuclear 3D structure. Here, we discuss our current knowledge of how PcG proteins regulate transcription across the three mentioned levels, and in particular their possible role in regulation of remote genes. We suggest the possibility that PcG proteins establish 3D networks of chromatin contacts as a mechanism to orchestrate gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Ordem dos Genes/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Proteínas Repressoras/fisiologia , Animais , Montagem e Desmontagem da Cromatina/fisiologia , Inativação Gênica/fisiologia , Humanos , Modelos Biológicos , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética
13.
Semin Cell Dev Biol ; 18(5): 707-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17905616

RESUMO

Higher order chromatin structure, i.e. the three-dimensional (3D) organization of the genome in the interphase nucleus, is an important component in the orchestration of gene expression in the mammalian genome. In this review we describe principles of higher order chromatin structure discussing three organizational parameters, i.e. chromatin folding, chromatin compaction and the nuclear position of the chromatin fibre. We argue that principles of 3D genome organization are probabilistic traits, reflected in a considerable cell-to-cell variation in 3D genome structure. It will be essential to understand how such higher order organizational aspects contribute to genome function to unveil global genome regulation.


Assuntos
Cromatina/genética , Cromatina/fisiologia , Genoma/genética , Genoma/fisiologia , Interfase/fisiologia , Animais , Núcleo Celular/genética , Núcleo Celular/fisiologia , Cromatina/química , Cromossomos/genética , Cromossomos/fisiologia , Humanos , Interfase/genética , Dobramento de Proteína
14.
J Cell Biochem ; 102(5): 1067-75, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17786936

RESUMO

Gene regulation in higher eukaryotes has been shown to involve regulatory sites, such as promoters and enhancers which act at the level of individual genes, and mechanisms which control the functional state of gene clusters. A fundamental question is whether additional levels of genome control exist. Nuclear organization and large-scale chromatin structure may constitute such a level and play an important role in the cell-type specific orchestration of the expression of thousands of genes in eukaryotic cells. Numerous observations indicate a tight correlation between genome activity and nuclear and large-scale chromatin structure. However, causal relationships are rare. Here we explore how these might be uncovered.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Genoma , Animais , Núcleo Celular/genética , Cromatina/genética , Células Eucarióticas , Regulação da Expressão Gênica , Engenharia Genética , Humanos , Modelos Genéticos , Matriz Nuclear/metabolismo
15.
Mol Cell Biol ; 27(12): 4475-87, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17420274

RESUMO

The three-dimensional (3D) organization of the chromosomal fiber in the human interphase nucleus is an important but poorly understood aspect of gene regulation. Here we quantitatively analyze and compare the 3D structures of two types of genomic domains as defined by the human transcriptome map. While ridges are gene dense and show high expression levels, antiridges, on the other hand, are gene poor and carry genes that are expressed at low levels. We show that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges. Six human cell lines that display different gene expression patterns and karyotypes share these structural parameters of chromatin. This shows that the chromatin structures of these two types of genomic domains are largely independent of tissue-specific variations in gene expression and differentiation state. Moreover, we show that there is remarkably little intermingling of chromatin from different parts of the same chromosome in a chromosome territory, neither from adjacent nor from distant parts. This suggests that the chromosomal fiber has a compact structure that sterically suppresses intermingling. Together, our results reveal novel general aspects of 3D chromosome architecture that are related to genome structure and function.


Assuntos
Cromossomos Humanos , Genoma Humano , Interfase , Mapeamento Físico do Cromossomo , Transcrição Gênica , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos
16.
Mol Biol Cell ; 18(4): 1464-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17314413

RESUMO

The heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1alpha or HP1beta proteins lacking a functional chromodomain. Expression of these truncated HP1 proteins individually or in combination resulted in a strong reduction of the accumulation of HP1alpha, HP1beta, and HP1gamma in pericentromeric heterochromatin domains in mouse 3T3 fibroblasts. The expression levels of HP1 did not change. The apparent displacement of HP1alpha, HP1beta, and HP1gamma from pericentromeric heterochromatin did not result in visible changes in the structure of pericentromeric heterochromatin domains, as visualized by DAPI staining and immunofluorescent labeling of H3K9me. Our results show that the accumulation of HP1alpha, HP1beta, and HP1gamma at pericentromeric heterochromatin domains is not required to maintain DAPI-stained pericentromeric heterochromatin domains and the methylated state of histone H3 at lysine 9 in such heterochromatin domains.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Células 3T3 , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Heterocromatina/ultraestrutura , Histonas/metabolismo , Humanos , Indóis/metabolismo , Metilação , Camundongos , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Histochem Cell Biol ; 125(1-2): 53-61, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16283356

RESUMO

Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1alpha and HP1beta to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1alpha or HP1beta we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1alpha and HP1beta to the chromosome region. We show that CD-less HP1alpha can induce chromatin condensation, whereas the effect of truncated HP1beta is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1alpha and HP1beta without a functional CD are able to induce heterochromatinization.


Assuntos
Cromatina/metabolismo , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/farmacologia , Heterocromatina/metabolismo , Animais , Células CHO , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cricetinae , Imunofluorescência , Heterocromatina/genética , Histonas/metabolismo , Humanos , Interpretação de Imagem Assistida por Computador , Lisina/metabolismo , Metilação , Microscopia Confocal , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA