Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 212-233, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38169966

RESUMO

Diabetes Mellitus, one of the leading causes of death worldwide, has no cure to date and can lead to severe health complications, such as retinopathy, limb amputation, cardiovascular diseases, and neuronal disease, if left untreated. Consequently, it becomes crucial to be able to monitor and predict the incidence of diabetes. Machine learning approaches have been proposed and evaluated in the literature for diabetes prediction. This paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk factors. The proposed system is underpinned by blockchain to obtain a cohesive view of the risk factors data from patients across different hospitals and ensure security and privacy of the user's data. We provide a comparative analysis of different medical sensors, devices, and methods to measure and collect the risk factors values in the system. Numerical experiments and comparative analysis were carried out within our proposed system, using the most accurate random forest (RF) model, and the two most used state-of-the-art machine learning approaches, Logistic Regression (LR) and Support Vector Machine (SVM), using three real-life diabetes datasets. The results show that the proposed system predicts diabetes using RF with 4.57% more accuracy on average in comparison with the other models LR and SVM, with 2.87 times more execution time. Data balancing without feature selection does not show significant improvement. When using feature selection, the performance is improved by 1.14% for PIMA Indian and 0.02% for Sylhet datasets, while it is reduced by 0.89% for MIMIC III.

2.
Front Med (Lausanne) ; 9: 871885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111116

RESUMO

COVID-19 is a contagious disease that has infected over half a billion people worldwide. Due to the rapid spread of the virus, countries are facing challenges to cope with the infection growth. In particular, healthcare organizations face difficulties efficiently provisioning medical staff, equipment, hospital beds, and quarantine centers. Machine and deep learning models have been used to predict infections, but the selection of the model is challenging for a data analyst. This paper proposes an automated Artificial Intelligence-enabled proactive preparedness real-time system that selects a learning model based on the temporal distribution of the evolution of infection. The proposed system integrates a novel methodology in determining the suitable learning model, producing an accurate forecasting algorithm with no human intervention. Numerical experiments and comparative analysis were carried out between our proposed and state-of-the-art approaches. The results show that the proposed system predicts infections with 72.1% less Mean Absolute Percentage Error (MAPE) and 65.2% lower Root Mean Square Error (RMSE) on average than state-of-the-art approaches.

3.
Sensors (Basel) ; 21(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372471

RESUMO

The vehicular network is an emerging technology in the Intelligent Smart Transportation era. The network provides mechanisms for running different applications, such as accident prevention, publishing and consuming services, and traffic flow management. In such scenarios, edge and cloud computing come into the picture to offload computation from vehicles that have limited processing capabilities. Optimizing the energy consumption of the edge and cloud servers becomes crucial. However, existing research efforts focus on either vehicle or edge energy optimization, and do not account for vehicular applications' quality of services. In this paper, we address this void by proposing a novel offloading algorithm, ESCOVE, which optimizes the energy of the edge-cloud computing platform. The proposed algorithm respects the Service level agreement (SLA) in terms of latency, processing and total execution times. The experimental results show that ESCOVE is a promising approach in energy savings while preserving SLAs compared to the state-of-the-art approach.

4.
Sensors (Basel) ; 21(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071449

RESUMO

Blockchain is a disruptive technology for shaping the next era of a healthcare system striving for efficient and effective patient care. This is thanks to its peer-to-peer, secure, and transparent characteristics. On the other hand, cloud computing made its way into the healthcare system thanks to its elasticity and cost-efficiency nature. However, cloud-based systems fail to provide a secured and private patient-centric cohesive view to multiple healthcare stakeholders. In this situation, blockchain provides solutions to address security and privacy concerns of the cloud because of its decentralization feature combined with data security and privacy, while cloud provides solutions to the blockchain scalability and efficiency challenges. Therefore a novel paradigm of blockchain-cloud integration (BcC) emerges for the domain of healthcare. In this paper, we provide an in-depth analysis of the BcC integration for the healthcare system to give the readers the motivations behind the emergence of this new paradigm, introduce a classification of existing architectures and their applications for better healthcare. We then review the development platforms and services and highlight the research challenges for the integrated BcC architecture, possible solutions, and future research directions. The results of this paper will be useful for the healthcare industry to design and develop a data management system for better patient care.


Assuntos
Blockchain , Segurança Computacional , Gerenciamento de Dados , Atenção à Saúde , Registros Eletrônicos de Saúde , Humanos
5.
Comput Struct Biotechnol J ; 19: 1759-1785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897980

RESUMO

Diabetes is the leading cause of severe health complications and one of the top 10 causes of death worldwide. To date, diabetes has no cure, and therefore, it is necessary to take precautionary measures to avoid its occurrence. The main aim of this systematic review is to identify the majority of the risk factors for the incidence/prevalence of type 2 diabetes mellitus on one hand, and to give a critical analysis of the cohort/cross-sectional studies which examine the impact of the association of risk factors on diabetes. Consequently, we provide insights on risk factors whose interactions are major players in developing diabetes. We conclude with recommendations to allied health professionals, individuals and government institutions to support better diagnosis and prognosis of the disease.

6.
Comput Struct Biotechnol J ; 18: 2972-3206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32994886

RESUMO

When will the coronavirus end? Are the current precautionary measures effective? To answer these questions it is important to forecast regularly and accurately the spread of COVID-19 infections. Different time series forecasting models have been applied in the literature to tackle the pandemic situation. The current research efforts developed few of these models and validates its accuracy for selected countries. It becomes difficult to draw an objective comparison between the performance of these models at a global scale. This is because, the time series trend for the infection differs between the countries depending on the strategies adopted by the healthcare organizations to decrease the spread. Consequently, it is important to develop a tailored model for a country that allows healthcare organizations to better judge the effect of the undertaken precautionary measures, and provision more efficiently the needed resources to face this disease. This paper addresses this void. We develop and compare the performance of the time series models in the literature in terms of root mean squared error and mean absolute percentage error.

7.
J Med Internet Res ; 22(7): e17508, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348265

RESUMO

BACKGROUND: Over the last century, disruptive incidents in the fields of clinical and biomedical research have yielded a tremendous change in health data management systems. This is due to a number of breakthroughs in the medical field and the need for big data analytics and the Internet of Things (IoT) to be incorporated in a real-time smart health information management system. In addition, the requirements of patient care have evolved over time, allowing for more accurate prognoses and diagnoses. In this paper, we discuss the temporal evolution of health data management systems and capture the requirements that led to the development of a given system over a certain period of time. Consequently, we provide insights into those systems and give suggestions and research directions on how they can be improved for a better health care system. OBJECTIVE: This study aimed to show that there is a need for a secure and efficient health data management system that will allow physicians and patients to update decentralized medical records and to analyze the medical data for supporting more precise diagnoses, prognoses, and public insights. Limitations of existing health data management systems were analyzed. METHODS: To study the evolution and requirements of health data management systems over the years, a search was conducted to obtain research articles and information on medical lawsuits, health regulations, and acts. These materials were obtained from the Institute of Electrical and Electronics Engineers, the Association for Computing Machinery, Elsevier, MEDLINE, PubMed, Scopus, and Web of Science databases. RESULTS: Health data management systems have undergone a disruptive transformation over the years from paper to computer, web, cloud, IoT, big data analytics, and finally to blockchain. The requirements of a health data management system revealed from the evolving definitions of medical records and their management are (1) medical record data, (2) real-time data access, (3) patient participation, (4) data sharing, (5) data security, (6) patient identity privacy, and (7) public insights. This paper reviewed health data management systems based on these 7 requirements across studies conducted over the years. To our knowledge, this is the first analysis of the temporal evolution of health data management systems giving insights into the system requirements for better health care. CONCLUSIONS: There is a need for a comprehensive real-time health data management system that allows physicians, patients, and external users to input their medical and lifestyle data into the system. The incorporation of big data analytics will aid in better prognosis or diagnosis of the diseases and the prediction of diseases. The prediction results will help in the development of an effective prevention plan.


Assuntos
Pesquisa Biomédica/métodos , Gerenciamento de Dados/métodos , Atenção à Saúde/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA