Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(4): 711-714, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334219

RESUMO

The manipulation of human leukocyte antigens (HLAs) and immune modulatory factors in "universal" human pluripotent stem cells (PSCs) holds promise for immunological tolerance without HLA matching. This paradigm raises concerns should "universal" grafts become virally infected. Furthermore, immunological manipulation might functionally impair certain progeny, such as hematopoietic stem cells. We discuss the risks and benefits of hypoimmunogenic PSCs, and the need to further advance HLA matching and autologous strategies.


Assuntos
Pandemias , Células-Tronco Pluripotentes , Antígenos HLA , Humanos , Transplante de Células-Tronco/efeitos adversos
2.
Stem Cell Reports ; 12(5): 861-868, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31006630

RESUMO

The neural crest (NC) gives rise to a multitude of fetal tissues, and its misregulation is implicated in congenital malformations. Here, we investigated molecular mechanisms pertaining to NC-related symptoms in Bohring-Opitz syndrome (BOS), a developmental disorder linked to mutations in the Polycomb group factor Additional sex combs-like 1 (ASXL1). Genetically edited human pluripotent stem cell lines that were differentiated to NC progenitors and then xenotransplanted into chicken embryos demonstrated an impairment of NC delamination and emigration. Molecular analysis showed that ASXL1 mutations correlated with reduced activation of the transcription factor ZIC1 and the NC gene regulatory network. These findings were supported by differentiation experiments using BOS patient-derived induced pluripotent stem cell lines. Expression of truncated ASXL1 isoforms (amino acids 1-900) recapitulated the NC phenotypes in vitro and in ovo, raising the possibility that truncated ASXL1 variants contribute to BOS pathology. Collectively, we expand the understanding of truncated ASXL1 in BOS and in the human NC.


Assuntos
Diferenciação Celular/genética , Craniossinostoses/genética , Perfilação da Expressão Gênica/métodos , Deficiência Intelectual/genética , Mutação , Crista Neural/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Animais , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Redes Reguladoras de Genes , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Proteínas Repressoras/metabolismo , Transplante Heterólogo
3.
J Neurosci ; 35(39): 13385-401, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424886

RESUMO

Wingless-related MMTV integration site 1 (WNT1)/ß-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/ß-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/ß-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a secreted modulator of WNT (Wingless-related MMTV integration site)/ß-catenin signaling, is both necessary and sufficient for the proper differentiation and survival of a rostrolateral (parabrachial pigmented nucleus and dorsomedial substantia nigra pars compacta) mesodiencephalic dopaminergic neuron subset, using Dkk3 mutant mice and murine primary ventral midbrain and pluripotent stem cells. The progressive loss of these dopamine-producing mesodiencephalic neurons is a hallmark of human Parkinson's disease, which can up to now not be halted by clinical treatments of this disease. Thus, the soluble DKK3 protein might be a promising new agent for the improvement of current protocols for the directed differentiation of pluripotent and multipotent stem cells into mesodiencephalic dopaminergic neurons and for the promotion of their survival in situ.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mesencéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
4.
PLoS One ; 9(7): e101124, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983448

RESUMO

The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.


Assuntos
Cerebelo/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Neuroglia/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Cerebelo/citologia , Cerebelo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/citologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
5.
Exp Neurol ; 254: 153-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24491957

RESUMO

Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1ß release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity.


Assuntos
Hiperóxia/tratamento farmacológico , Leucoencefalopatias/prevenção & controle , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Antibacterianos/farmacologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Feminino , Humanos , Hiperóxia/patologia , Recém-Nascido , Leucoencefalopatias/patologia , Masculino , Microglia/citologia , Fármacos Neuroprotetores/farmacologia , Oligodendroglia/citologia , Gravidez , Cultura Primária de Células , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA