Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(7): 1359-1371, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37319176

RESUMO

We discuss the design, development, and evaluation of an Orbitrap/time-of-flight (TOF) mass spectrometry (MS)-based instrument with integrated UV photodissociation (UVPD) and time/mass-to-charge ratio (m/z)-resolved imaging for the comprehensive study of the higher-order molecular structure of macromolecular assemblies (MMAs). A bespoke TOF analyzer has been coupled to the higher-energy collisional dissociation cell of an ultrahigh mass range hybrid quadrupole-Orbitrap MS. A 193 nm excimer laser was employed to photofragment MMA ions. A combination of microchannel plates (MCPs)-Timepix (TPX) quad and MCPs-phosphor screen-TPX3CAM assemblies have been used as axial and orthogonal imaging detectors, respectively. The instrument can operate in four different modes, where the UVPD-generated fragment ions from the native MMA ions can be measured with high-mass resolution or imaged in a mass-resolved manner to reveal the relative positions of the UVPD fragments postdissociation. This information is intended to be utilized for retrieving higher-order molecular structural details that include the conformation, subunit stoichiometry, and molecular interactions as well as to understand the dissociation dynamics of the MMAs in the gas phase.

2.
Anal Chem ; 95(2): 1470-1479, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574608

RESUMO

The Timepix (TPX) is a position- and time-sensitive pixelated charge detector that can be coupled with time-of-flight mass spectrometry (TOF MS) in combination with microchannel plates (MCPs) for the spatially and temporally resolved detection of biomolecules. Earlier generation TPX detectors used in previous studies were limited by a moderate time resolution (at best 10 ns) and single-stop detection for each pixel that hampered the detection of ions with high mass-to-charge (m/z) values at high pixel occupancies. In this study, we have coupled an MCP-phosphor screen-TPX3CAM detection assembly that contains a silicon-coated TPX3 chip to a matrix-assisted laser desorption/ionization (MALDI)-axial TOF MS. A time resolution of 1.5625 ns, per-pixel multihit functionality, simultaneous measurement of TOF and time-over-threshold (TOT) values, and kHz readout rates of the TPX3 extended the m/z detection range of the TPX detector family. The detection of singly charged intact Immunoglobulin M ions of m/z value approaching 1 × 106 Da has been demonstrated. We also discuss the utilization of additional information on impact coordinates and TOT provided by the TPX3 compared to conventional MS detectors for the enhancement of the quality of the mass spectrum in terms of signal-to-noise (S/N) ratio. We show how the reduced dead time and event-based readout in TPX3 compared to the TPX improves the sensitivity of high m/z detection in both low and high mass measurements (m/z range: 757-970,000 Da). We further exploit the imaging capabilities of the TPX3 detector for the spatial and temporal separation of neutral fragments generated by metastable decay at different locations along the field-free flight region by simultaneous application of deflection and retarding fields.


Assuntos
Diagnóstico por Imagem , Silício , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Íons , Lasers
3.
J Mass Spectrom ; 57(4): e4820, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35347816

RESUMO

Time-of-flight (TOF) systems are one of the most widely used mass analyzers in native mass spectrometry (nMS) for the analysis of non-covalent multiply charged bio-macromolecular assemblies (MMAs). Typically, microchannel plates (MCPs) are employed for high mass native ion detection in TOF MS. MCPs are well known for their reduced detection efficiency when impinged by large slow moving ions. Here, a position- and time-sensitive Timepix (TPX) detector has been added to the back of a dual MCP stack to study the key factors that affect MCP performance for MMA ions generated by nMS. The footprint size of the secondary electron cloud generated by the MCP on the TPX for each individual ion event is analyzed as a measure of MCP performance at each mass-to-charge (m/z) value and resulted in a Poisson distribution. This allowed us to investigate the dependency of ion mass, ion charge, ion velocity, acceleration voltage, and MCP bias voltage on MCP response in the high mass low velocity regime. The study of measurement ranges; ion mass = 195 to 802,000 Da, ion velocity = 8.4 to 67.4 km/s, and ion charge = 1+ to 72+, extended the previously examined mass range and characterized MCP performance for multiply charged species. We derived a MCP performance equation based on two independent ion properties, ion mass and charge, from these results, which enables rapid MCP tuning for single MMA ion detection.

4.
Curr Res Struct Biol ; 3: 153-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337436

RESUMO

ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data shows that quaternary structure of EspB is conserved across slow growing species, but not in the fast growing M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.

5.
J Am Soc Mass Spectrom ; 32(2): 569-580, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33439014

RESUMO

Native mass spectrometry (native MS) has emerged as a powerful technique to study the structure and stoichiometry of large protein complexes. Traditionally, native MS has been performed on modified time-of-flight (TOF) systems combined with detectors that do not provide information on the arrival coordinates of each ion at the detector. In this study, we describe the implementation of a Timepix (TPX) pixelated detector on a modified orthogonal TOF (O-TOF) mass spectrometer for the analysis and imaging of native protein complexes. In this unique experimental setup, we have used the impact positions of the ions at the detector to visualize the effects of various ion optical parameters on the flight path of ions. We also demonstrate the ability to unambiguously detect and image individual ion events, providing the first report of single-ion imaging of protein complexes in native MS. Furthermore, the simultaneous space- and time-sensitive nature of the TPX detector was critical in the identification of the origin of an unexpected TOF signal. A signal that could easily be mistaken as a fragment of the protein complex was explicitly identified as a secondary electron signal arising from ion-surface collisions inside the TOF housing. This work significantly extends the mass range previously detected with the TPX and exemplifies the value of simultaneous space- and time-resolved detection in the study of ion optical processes and ion trajectories in TOF mass spectrometers.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Proteínas/análise , Elétrons , Desenho de Equipamento , Íons , Imagem Molecular/métodos , Peso Molecular , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA