Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 49(1): e6, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33221881

RESUMO

A lack of high-throughput techniques for making titrated, gene-specific changes in expression limits our understanding of the relationship between gene expression and cell phenotype. Here, we present a generalizable approach for quantifying growth rate as a function of titrated changes in gene expression level. The approach works by performing CRISPRi with a series of mutated single guide RNAs (sgRNAs) that modulate gene expression. To evaluate sgRNA mutation strategies, we constructed a library of 5927 sgRNAs targeting 88 genes in Escherichia coli MG1655 and measured the effects on growth rate. We found that a compounding mutational strategy, through which mutations are incrementally added to the sgRNA, presented a straightforward way to generate a monotonic and gradated relationship between mutation number and growth rate effect. We also implemented molecular barcoding to detect and correct for mutations that 'escape' the CRISPRi targeting machinery; this strategy unmasked deleterious growth rate effects obscured by the standard approach of ignoring escapers. Finally, we performed controlled environmental variations and observed that many gene-by-environment interactions go completely undetected at the limit of maximum knockdown, but instead manifest at intermediate expression perturbation strengths. Overall, our work provides an experimental platform for quantifying the phenotypic response to gene expression variation.


Assuntos
Sistemas CRISPR-Cas/genética , Biologia Computacional/métodos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Guia de Cinetoplastídeos/genética , Divisão Celular/genética , Escherichia coli/crescimento & desenvolvimento , Interação Gene-Ambiente , Técnicas Genéticas , Genótipo , Mutação
2.
Cell Rep ; 27(11): 3359-3370.e7, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189117

RESUMO

Enzyme function and evolution are influenced by the larger context of a metabolic pathway. Deleterious mutations or perturbations in one enzyme can often be compensated by mutations to others. We used comparative genomics and experiments to examine evolutionary interactions with the essential metabolic enzyme dihydrofolate reductase (DHFR). Analyses of synteny and co-occurrence across bacterial species indicate that DHFR is coupled to thymidylate synthase (TYMS) but relatively independent from the rest of folate metabolism. Using quantitative growth rate measurements and forward evolution in Escherichia coli, we demonstrate that the two enzymes adapt as a relatively independent unit in response to antibiotic stress. Metabolomic profiling revealed that TYMS activity must not exceed DHFR activity to prevent the depletion of reduced folates and the accumulation of the intermediate dihydrofolate. Comparative genomics analyses identified >200 gene pairs with similar statistical signatures of modular co-evolution, suggesting that cellular pathways may be decomposable into small adaptive units.


Assuntos
Adaptação Fisiológica , Proteínas de Escherichia coli/genética , Evolução Molecular , Ácido Fólico/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Timidilato Sintase/genética , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Ácido Fólico/genética , Estresse Fisiológico , Sintenia , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
3.
Mol Cell Proteomics ; 16(2): 243-254, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27932527

RESUMO

Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1-4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5-7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).


Assuntos
Espectrometria de Massas/métodos , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Animais , Autofagia , Dieta , Marcação por Isótopo , Camundongos
4.
Proc Natl Acad Sci U S A ; 112(8): 2413-8, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675501

RESUMO

G-protein signaling depends on the ability of the individual subunits of the G-protein heterotrimer to assemble into a functional complex. Formation of the G-protein ßγ (Gßγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings Gß and Gγ together. This system includes cytosolic chaperonin containing TCP-1 (CCT; also called TRiC) and its cochaperone phosducin-like protein 1 (PhLP1). Two key intermediates in the Gßγ assembly process, the Gß-CCT and the PhLP1-Gß-CCT complexes, were isolated and analyzed by a hybrid structural approach using cryo-electron microscopy, chemical cross-linking coupled with mass spectrometry, and unnatural amino acid cross-linking. The structures show that Gß interacts with CCT in a near-native state through interactions of the Gγ-binding region of Gß with the CCTγ subunit. PhLP1 binding stabilizes the Gß fold, disrupting interactions with CCT and releasing a PhLP1-Gß dimer for assembly with Gγ. This view provides unique insight into the interplay between CCT and a cochaperone to orchestrate the folding of a protein substrate.


Assuntos
Proteínas de Transporte/química , Chaperonina com TCP-1/química , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Proteínas do Tecido Nervoso/química , Multimerização Proteica , Aminoácidos/metabolismo , Animais , Benzofenonas , Proteínas de Transporte/ultraestrutura , Chaperonina com TCP-1/ultraestrutura , Reagentes de Ligações Cruzadas/metabolismo , Microscopia Crioeletrônica , Subunidades beta da Proteína de Ligação ao GTP/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/ultraestrutura , Humanos , Espectrometria de Massas , Modelos Moleculares , Proteínas do Tecido Nervoso/ultraestrutura , Fenilalanina/análogos & derivados , Estrutura Secundária de Proteína
5.
Mol Biol Cell ; 26(3): 569-82, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25428989

RESUMO

We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.


Assuntos
Proteínas de Transporte/metabolismo , Glucose/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Regulação para Baixo , Ativação Enzimática , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores
6.
Mol Cell Biol ; 34(24): 4379-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266655

RESUMO

14-3-3ζ promotes cell survival via dynamic interactions with a vast network of binding partners, many of which are involved in stress regulation. We show here that hypoxia (low glucose and oxygen) triggers a rearrangement of the 14-3-3ζ interactome to favor an interaction with the core autophagy regulator Atg9A. Our data suggest that the localization of mammalian Atg9A to autophagosomes requires phosphorylation on the C terminus of Atg9A at S761, which creates a 14-3-3ζ docking site. Under basal conditions, this phosphorylation is maintained at a low level and is dependent on both ULK1 and AMPK. However, upon induction of hypoxic stress, activated AMPK bypasses the requirement for ULK1 and mediates S761 phosphorylation directly, resulting in an increase in 14-3-3ζ interactions, recruitment of Atg9A to LC3-positive autophagosomes, and enhanced autophagosome production. These data suggest a novel mechanism whereby the level of autophagy induction can be modulated by AMPK/ULK1-mediated phosphorylation of mammalian Atg9A.


Assuntos
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Hipóxia Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Fosforilação , Serina/metabolismo , Estresse Fisiológico , Proteínas de Transporte Vesicular/genética
7.
J Virol ; 88(20): 11846-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100842

RESUMO

This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. Importance: The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.


Assuntos
Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Bacillus cereus/virologia , Genoma Bacteriano , Proteoma , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Fases de Leitura Aberta , Virulência
8.
BMC Bioinformatics ; 15 Suppl 7: S9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078324

RESUMO

BACKGROUND: For decades, mass spectrometry data has been analyzed to investigate a wide array of research interests, including disease diagnostics, biological and chemical theory, genomics, and drug development. Progress towards solving any of these disparate problems depends upon overcoming the common challenge of interpreting the large data sets generated. Despite interim successes, many data interpretation problems in mass spectrometry are still challenging. Further, though these challenges are inherently interdisciplinary in nature, the significant domain-specific knowledge gap between disciplines makes interdisciplinary contributions difficult. RESULTS: This paper provides an introduction to the burgeoning field of computational mass spectrometry. We illustrate key concepts, vocabulary, and open problems in MS-omics, as well as provide invaluable resources such as open data sets and key search terms and references. CONCLUSIONS: This paper will facilitate contributions from mathematicians, computer scientists, and statisticians to MS-omics that will fundamentally improve results over existing approaches and inform novel algorithmic solutions to open problems.


Assuntos
Espectrometria de Massas , Matemática , Metabolômica/métodos , Proteômica/métodos , Algoritmos , Espectrometria de Massas/métodos
9.
Mol Biol Cell ; 25(14): 2199-215, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24850888

RESUMO

Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Mitocôndrias/enzimologia , Consumo de Oxigênio , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA