Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133073

RESUMO

Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. Subsequently, decoding the selected clones by short or long-read sequencing methods leads to large sequence-function datasets that may allow extrapolation from experimental directed evolution to further improved mutants beyond the observed hits. In this work, we explore experimental strategies for how to draw up 'fitness landscapes' in sequence space with uHT droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.

2.
ArXiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947930

RESUMO

We introduce RNA-FrameFlow, the first generative model for 3D RNA backbone design. We build upon SE(3) flow matching for protein backbone generation and establish protocols for data preparation and evaluation to address unique challenges posed by RNA modeling. We formulate RNA structures as a set of rigid-body frames and associated loss functions which account for larger, more conformationally flexible RNA backbones (13 atoms per nucleotide) vs. proteins (4 atoms per residue). Toward tackling the lack of diversity in 3D RNA datasets, we explore training with structural clustering and cropping augmentations. Additionally, we define a suite of evaluation metrics to measure whether the generated RNA structures are globally self-consistent (via inverse folding followed by forward folding) and locally recover RNA-specific structural descriptors. The most performant version of RNA-FrameFlow generates locally realistic RNA backbones of 40-150 nucleotides, over 40% of which pass our validity criteria as measured by a self-consistency TM-score >= 0.45, at which two RNAs have the same global fold. Open-source code: https://github.com/rish-16/rna-backbone-design.

3.
ArXiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947934

RESUMO

We introduce ProteinWorkshop, a comprehensive benchmark suite for representation learning on protein structures with Geometric Graph Neural Networks. We consider large-scale pre-training and downstream tasks on both experimental and predicted structures to enable the systematic evaluation of the quality of the learned structural representation and their usefulness in capturing functional relationships for downstream tasks. We find that: (1) large-scale pretraining on AlphaFold structures and auxiliary tasks consistently improve the performance of both rotation-invariant and equivariant GNNs, and (2) more expressive equivariant GNNs benefit from pretraining to a greater extent compared to invariant models. We aim to establish a common ground for the machine learning and computational biology communities to rigorously compare and advance protein structure representation learning. Our open-source codebase reduces the barrier to entry for working with large protein structure datasets by providing: (1) storage-efficient dataloaders for large-scale structural databases including AlphaFoldDB and ESM Atlas, as well as (2) utilities for constructing new tasks from the entire PDB. ProteinWorkshop is available at: github.com/a-r-j/ProteinWorkshop.

4.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826198

RESUMO

Computational RNA design tasks are often posed as inverse problems, where sequences are designed based on adopting a single desired secondary structure without considering 3D geometry and conformational diversity. We introduce gRNAde, a geometric RNA design pipeline operating on 3D RNA backbones to design sequences that explicitly account for structure and dynamics. Under the hood, gRNAde is a multi-state Graph Neural Network that generates candidate RNA sequences conditioned on one or more 3D backbone structures where the identities of the bases are unknown. On a single-state fixed backbone re-design benchmark of 14 RNA structures from the PDB identified by Das et al. [2010], gRNAde obtains higher native sequence recovery rates (56% on average) compared to Rosetta (45% on average), taking under a second to produce designs compared to the reported hours for Rosetta. We further demonstrate the utility of gRNAde on a new benchmark of multi-state design for structurally flexible RNAs, as well as zero-shot ranking of mutational fitness landscapes in a retrospective analysis of a recent RNA polymerase ribozyme structure.

5.
ArXiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38827456

RESUMO

Computational RNA design tasks are often posed as inverse problems, where sequences are designed based on adopting a single desired secondary structure without considering 3D geometry and conformational diversity. We introduce gRNAde, a geometric RNA design pipeline operating on 3D RNA backbones to design sequences that explicitly account for structure and dynamics. Under the hood, gRNAde is a multi-state Graph Neural Network that generates candidate RNA sequences conditioned on one or more 3D backbone structures where the identities of the bases are unknown. On a single-state fixed backbone re-design benchmark of 14 RNA structures from the PDB identified by Das et al. [2010], gRNAde obtains higher native sequence recovery rates (56% on average) compared to Rosetta (45% on average), taking under a second to produce designs compared to the reported hours for Rosetta. We further demonstrate the utility of gRNAde on a new benchmark of multi-state design for structurally flexible RNAs, as well as zero-shot ranking of mutational fitness landscapes in a retrospective analysis of a recent RNA polymerase ribozyme structure. Open source code: https://github.com/chaitjo/geometric-rna-design.

6.
Transplant Direct ; 10(6): e1628, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757047

RESUMO

Background: Normothermic machine perfusion (NMP) of liver grafts has been shown to reduce intraoperative catecholamine consumption and the need for allogenic blood products after reperfusion compared with organs undergoing classical static cold storage (SCS). This study aimed to investigate the effects of an NMP phase after SCS (NMP after SCS) of liver grafts in terms of postreperfusion hemodynamics and transfusion requirements. Methods: Eighteen recipients of NMP after SCS grafts were matched according to recipient age, donor age, and model for end-stage liver disease score in a 1:2 ratio with recipients of an SCS graft. Postreperfusion hemodynamics and the need for catecholamines, blood products, and clotting factors were compared. Results: After reperfusion of the organ, patients in the NMP after SCS group showed significantly reduced transfusion requirements for packed red blood cells and platelet concentrates compared with patients of the SCS group (P < 0.001 and P = 0.018, respectively). In addition, patients in the NMP after SCS group received less fibrinogen concentrate (NMP after SCS group 0 [0-1.5] g versus SCS group 2 [0-4] g; P = 0.0163). No differences in postreperfusion hemodynamics could be detected between groups. Conclusions: This retrospective analysis shows that NMP reduces postreperfusion requirements of red blood cells, platelet concentrates, and fibrinogen concentrate even if installed after a phase of organ SCS, because it may be practiced on most centers where NMP is available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA