Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Ultrasound Med Biol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277462

RESUMO

OBJECTIVE: Tamoxifen is the most used agent to treat estrogen receptor-positive (ER+) breast cancer (BC). While it decreases the risk of cancer recurrence by 50%, many patients develop resistance to this treatment, culminating in highly aggressive disease. Tamoxifen resistance comes from the repression of ER transcriptional activity that switches the cancer cells to proliferation via nonhormonal signaling pathways. Here, we evaluate a potential strategy to overcome tamoxifen resistance by focused ultrasound (FUS), a noninvasive approach for the mechanical excitation of cancer cells. METHODS: Resistant and nonresistant ER+ BC cells and xenografts from patients with ER+ BC were treated with tamoxifen, FUS or their combination. The apoptosis, proliferation rate, gene expression and activity of estrogen receptor, and morphological changes were measured in treated cells and tissues. RESULTS: FUS caused the mechanical disruption of tamoxifen-resistant BC cells that in turn led to the upregulation of ERα-encoding gene expression and long-term re-sensitization of the cells to tamoxifen. Patient-derived xenografts treated with Tamoxifen and FUS demonstrated a significant reduction in tumor viability and proliferation and a strong structural damage to tumor cells and extracellular matrix. CONCLUSION: FUS can improve ER+ BC treatment by re-sensitizing the cancer cells to tamoxifen.

2.
Anticancer Drugs ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39163320

RESUMO

Triple-negative breast cancer (TNBC) is a highly invasive breast cancer subtype that is challenging to treat due to inherent heterogeneity and absence of estrogen, progesterone, and human epidermal growth factor 2 receptors. Kinase signaling networks drive cancer growth and development, and kinase inhibitors are promising anti-cancer strategies in diverse cancer subtypes. Kinase inhibitor screens are an efficient, valuable means of identifying compounds that suppress cancer cell growth in vitro, facilitating the identification of kinase vulnerabilities to target therapeutically. The Kinase Chemogenomic Set is a well-annotated library of 187 kinase inhibitor compounds that indexes 215 kinases of the 518 in the known human kinome representing various kinase networks and signaling pathways, several of which are understudied. Our screen revealed 14 kinase inhibitor compounds effectively inhibited TNBC cell growth and proliferation. Upon further testing, three compounds, THZ531, THZ1, and PFE-PKIS 29, had the most significant and consistent effects across a range of TNBC cell lines. These cyclin-dependent kinase (CDK)12/CDK13, CDK7, and phosphoinositide 3-kinase inhibitors, respectively, decreased metabolic activity in TNBC cell lines and promote a gene expression profile consistent with the reversal of the epithelial-to-mesenchymal transition, indicating these kinase networks potentially mediate metastatic behavior. These data identified novel kinase targets and kinase signaling pathways that drive metastasis in TNBC.

3.
Front Immunol ; 14: 1244159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901240

RESUMO

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Assuntos
Sulindaco , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Sulindaco/farmacologia , Sulindaco/uso terapêutico , Secretases da Proteína Precursora do Amiloide , Neoplasias de Mama Triplo Negativas/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças
4.
Sci Rep ; 13(1): 11843, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481672

RESUMO

Triple-negative breast cancers (TNBCs) are aggressive forms of breast cancer and tend to grow and spread more quickly than most other types of breast cancer. TNBCs can neither be targeted by hormonal therapies nor the antibody trastuzumab that targets the HER2 protein. There are urgent unmet medical needs to develop targeted drugs for TNBCs. We identified a small molecule NSC260594 from the NCI diversity set IV compound library. NSC260594 exhibited dramatic cytotoxicity in multiple TNBCs in a dose-and time-dependent manner. NSC260594 inhibited the Myeloid cell leukemia-1 (Mcl-1) expression through downregulation of Wnt signaling proteins. Consistent with this, NSC260594 treatment increased apoptosis, which was confirmed by using an Annexin-V/PI assay. Interestingly, NSC260594 treatment reduced the cancer stem cell (CSC) population in TNBCs. To make NSC260594 more clinically relevant, we treated NSC260594 with TNBC cell derived xenograft (CDX) mouse model, and with patient-derived xenograft (PDX) organoids. NSC260594 significantly suppressed MDA-MB-231 tumor growth in vivo, and furthermore, the combination treatment of NSC260594 and everolimus acted synergistically to decrease growth of TNBC PDX organoids. Together, we found that NSC260594 might serve as a lead compound for triple-negative breast cancer therapy through targeting Mcl-1.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Anexina A5 , Anticorpos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
Best Pract Res Clin Obstet Gynaecol ; 85(Pt B): 1-11, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36031533

RESUMO

BACKGROUND: Enhanced recovery after surgery (ERAS) protocols improve outcomes. We investigated ERAS implementation in a population with comorbid conditions, inadequate insurance, and barriers to healthcare undergoing gynecologic surgery. OBJECTIVE: To investigate ERAS implementation in publicly insured/uninsured patients undergoing gynecologic surgery on hospital length of stay (LOS), 30-day hospital readmission rates, opioid administration, and pain scores. STUDY DESIGN: Data were obtained pre- and post-ERAS implementation. Patients undergoing gynecologic surgery with private insurance, public insurance, and uninsured were included (N = 589). LOS, readmission <30 days, opioid administration, and pain scores were assessed. RESULTS: Implementation of ERAS led to shorter LOS 1.75 vs. 1.49 days (p = 0.008). Average pain scores decreased from 3.07 pre-ERAS vs. 2.47 post-ERAS (p = <0.001). Opioid use decreased for ERAS patients (67.22 vs. 33.18, p = <0.001). Hospital readmission rates were unchanged from 8.2% pre-ERAS vs. 10.3% post-ERAS (p = 0.392). CONCLUSIONS: ERAS decreased pain scores and opioid use without increasing LOS or readmissions.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Humanos , Feminino , Analgésicos Opioides , Estudos Retrospectivos , Procedimentos Cirúrgicos em Ginecologia/métodos , Tempo de Internação , Dor/etiologia , Complicações Pós-Operatórias/etiologia
6.
Cancer Metastasis Rev ; 41(3): 549-573, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35999486

RESUMO

The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Neoplasias da Mama/patologia , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Humanos , Masculino , Obesidade/complicações , Obesidade/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
7.
Mol Cancer ; 21(1): 138, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768871

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBCs) are clinically aggressive subtypes of breast cancer. TNBC is difficult to treat with targeted agents due to the lack of commonly targeted therapies within this subtype. Androgen receptor (AR) has been detected in 12-55% of TNBCs. AR stimulates breast tumor growth in the absence of estrogen receptor (ER), and it has become an emerging molecular target in TNBC treatment. METHODS: Ceritinib is a small molecule inhibitor of tyrosine kinase and it is used in the therapy of non-small lung cancer patients. Enzalutamide is a small molecule compound targeting the androgen receptor and it is used to treat prostate cancer. Combination therapy of these drugs were investigated using AR positive breast cancer mouse xenograft models. Also, combination treatment of ceritinib and paclitaxel investigated using AR- and AR low mouse xenograft and patient derived xenograft models. RESULTS: We screened 133 FDA approved drugs that have a therapeutic effect of AR+ TNBC cells. From the screen, we identified two drugs, ceritinib and crizotinib. Since ceritinib has a well- defined role in androgen independent AR signaling pathways, we further investigated the effect of ceritinib. Ceritinib treatment inhibited RTK/ACK/AR pathway and other downstream pathways in AR+ TNBC cells. The combination of ceritinib and enzalutamide showed a robust inhibitory effect on cell growth of AR+ TNBC cells in vitro and in vivo. Interestingly Ceritinib inhibits FAK-YB-1 signaling pathway that leads to paclitaxel resistance in all types of TNBC cells. The combination of paclitaxel and ceritinib showed drastic inhibition of tumor growth compared to a single drug alone. CONCLUSIONS: To improve the response of AR antagonist in AR positive TNBC, we designed a novel combinational strategy comprised of enzalutamide and ceritinib to treat AR+ TNBC tumors through the dual blockade of androgen-dependent and androgen-independent AR signaling pathways. Furthermore, we introduced a novel therapeutic combination of ceritinib and paclitaxel for AR negative or AR-low TNBCs and this combination inhibited tumor growth to a great extent. All agents used in our study are FDA-approved, and thus the proposed combination therapy will likely be useful in the clinic.


Assuntos
Neoplasias de Mama Triplo Negativas , Androgênios/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Pirimidinas , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Sulfonas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Front Mol Biosci ; 9: 847505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755802

RESUMO

Liver kinase B1 (LKB1) is a potent tumor suppressor that regulates cellular energy balance and metabolism as an upstream kinase of the AMP-activated protein kinase (AMPK) pathway. LKB1 regulates cancer cell invasion and metastasis in multiple cancer types, including breast cancer. In this study, we evaluated LKB1's role as a regulator of the tumor microenvironment (TME). This was achieved by seeding the MDA-MB-231-LKB1 overexpressing cell line onto adipose and tumor scaffolds, followed by the evaluation of tumor matrix-induced tumorigenesis and metastasis. Results demonstrated that the presence of tumor matrix enhanced tumorigenesis in both MDA-MB-231 and MDA-MB-231-LKB1 cell lines. Metastasis was increased in both MDA-MB-231 and -LKB1 cells seeded on the tumor scaffold. Endpoint analysis of tumor and adipose scaffolds revealed LKB1-mediated tumor microenvironment remodeling as evident through altered matrix protein production. The proteomic analysis determined that LKB1 overexpression preferentially decreased all major and minor fibril collagens (collagens I, III, V, and XI). In addition, proteins observed to be absent in tumor scaffolds in the LKB1 overexpressing cell line included those associated with the adipose matrix (COL6A2) and regulators of adipogenesis (IL17RB and IGFBP4), suggesting a role for LKB1 in tumor-mediated adipogenesis. Histological analysis of MDA-MB-231-LKB1-seeded tumors demonstrated decreased total fibril collagen and indicated decreased stromal cell presence. In accordance with this, in vitro condition medium studies demonstrated that the MDA-MB-231-LKB1 secretome inhibited adipogenesis of adipose-derived stem cells. Taken together, these data demonstrate a role for LKB1 in regulating the tumor microenvironment through fibril matrix remodeling and suppression of adipogenesis.

9.
Front Biosci (Landmark Ed) ; 27(6): 196, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35748272

RESUMO

Mitogen Activated Protein (MAP) kinases are a category of serine/threonine kinases that have been demonstrated to regulate intracellular events including stress responses, developmental processes, and cancer progression Although many MAP kinases have been extensively studied in various disease processes, MAP3K19 is an understudied kinase whose activities have been linked to lung disease and fibroblast development. In this manuscript, we use bioinformatics databases starBase, GEPIA, and KMPlotter, to establish baseline expressions of MAP3K19 in different tissue types and its correlation with patient survival in different cancers.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias , Humanos , MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética
10.
SLAS Discov ; 27(3): 191-200, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124274

RESUMO

3D cell models derived from patient tumors are highly translational tools that can recapitulate the complex genetic and molecular compositions of solid cancers and accelerate identification of drug targets and drug testing. However, the complexity of performing assays with such models remains a hurdle for their wider adoption. In the present study, we describe methods for processing and multi-functional profiling of tumoroid samples to test compound effects using a novel flowchip system in combination with high content imaging and metabolite analysis. Tumoroids were formed from primary cells isolated from a patient-derived tumor explant, TU-BcX-4IC, that represents metaplastic breast cancer with a triple-negative breast cancer subtype. Assays were performed in a microfluidics-based device (Pu⋅MA System) that allows automated exchange of media and treatments of tumoroids in a tissue culture incubator environment. Multi-functional assay profiling was performed on tumoroids treated with anti-cancer drugs. High-content imaging was used to evaluate drug effects on cell viability and expression of E-cadherin and CD44. Lactate secretion was used to measure tumoroid metabolism as a function of time and drug concentration. Observed responses included loss of cell viability, decrease in E-cadherin expression, and increase of lactate production. Importantly, the tumoroids were sensitive to romidepsin and trametinib, while showed significantly reduced sensitivity to paclitaxel and cytarabine, consistent with the primary tumor response. These methods for multi-parametric profiling of drug effects in patient-derived tumoroids provide an in depth understanding of drug sensitivity of individual tumor types, with important implications for the future development of personalized medicine.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Caderinas , Humanos , Ácido Láctico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
11.
Breast Cancer Res Treat ; 189(1): 25-37, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231077

RESUMO

PURPOSE: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated. METHODS: In the current study, we induced exogenous expression of ZEB2 in ER + MCF-7 and ZR-75-1 breast cancer cell lines and examined EMT gene expression and metastasis using dose-response qRT-PCR, transwell migration assays, proliferation assays with immunofluorescence of Ki-67 staining. We used RNA sequencing to identify pathways and genes affected by ZEB2 overexpression. Finally, we treated ZEB2-overexpressing cells with 17ß-estradiol (E2) or ICI 182,780 to evaluate how ZEB2 affects estrogen response. RESULTS: Contrary to expectation, we found that ZEB2 did not increase canonical epithelial nor decrease mesenchymal gene expressions. Furthermore, ZEB2 overexpression did not promote a mesenchymal cell morphology. However, ZEB1 and ZEB2 protein expression induced significant migration of MCF-7 and ZR-75-1 breast cancer cells in vitro and MCF-7 xenograft metastasis in vivo. Transcriptomic (RNA sequencing) pathway analysis revealed alterations in estrogen signaling regulators and pathways, suggesting a role for ZEB2 in endocrine sensitivity in luminal A breast cancer. Expression of ZEB2 was negatively correlated with estrogen receptor complex genes in luminal A patient tumors. Furthermore, treatment with 17ß-estradiol (E2) or the estrogen receptor antagonist ICI 182,780 had no effect on growth of ZEB2-overexpressing cells. CONCLUSION: ZEB2 is a multi-functional regulator of drug sensitivity, cell migration, and metastasis in ER + breast cancer and functions through non-canonical mechanisms.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
12.
Breast Cancer Res Treat ; 189(1): 49-61, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34196902

RESUMO

PURPOSE: Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. METHODS: Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. RESULTS: NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. CONCLUSION: While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.


Assuntos
Neoplasias da Mama , Quinases Relacionadas a NIMA , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Quinases Relacionadas a NIMA/genética , Fenótipo , RNA Interferente Pequeno
13.
Oncotarget ; 12(11): 1110-1115, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34084284

RESUMO

LKB1-signaling has prominent roles in cancer development and metastasis. This report evaluates LKB1-signaling pathway gene expression associations with patient survival in overall breast cancer, specific subtypes, as well as pre- and post-chemotherapy. Subtypes analyzed were based on intrinsic molecular subtyping and traditional biomarker classifications. Intrinsic molecular subtypes included were Luminal-A, Luminal-B, HER2-enriched, and Basal-like. The biomarker subtypes assessed were Estrogen-Receptor Positive (ER+) and Negative (ER-), Wild-Type TP53 (WT-TP53) & Mutant-TP53, and Triple-Negative Breast Cancer (TNBC). Additionally, comparisons were made between these subtypes and breast cancer overall, and analyses between LKB1 signaling to patient survival before and after chemotherapy were made. We used the Kaplan-Meier Online Tool (KM Plotter) to correlate the relationship between mRNA expression of known LKB1 scaffolding proteins (CAB39 and LYK5), and downstream signaling targets (AMPK, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, PAK1, SIK1, SIK2, BRSK1, BRSK2, SNRK, and QSK), and patient survival across each subtype and treatment group. Our findings provide evidence that LKB1-signaling is associated with improved survival in overall breast cancer. Stratification into breast cancer subtypes show a more complicated relationship; NUAK2, for example, is correlated with improved survival in ER- but is worse in ER+ breast cancer. In evaluating the association of LKB1-signaling pathway expression with relapse free survival of varying breast cancer tumors exposed to chemotherapy or treatment-naive tumors, our data provides baseline knowledge for understanding the pathway dynamics that affect survival and therefore are linked to pathology. This establishes a foundation for studying LKB1 targets with the goal of identifying druggable targets.

14.
Oncoscience ; 8: 64-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026925

RESUMO

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.

16.
Front Bioeng Biotechnol ; 9: 618448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791282

RESUMO

Solid tumor progression is significantly influenced by interactions between cancer cells and the surrounding extracellular matrix (ECM). Specifically, the cancer cell-driven changes to ECM fiber alignment and collagen deposition impact tumor growth and metastasis. Current methods of quantifying these processes are incomplete, require simple or artificial matrixes, rely on uncommon imaging techniques, preclude the use of biological and technical replicates, require destruction of the tissue, or are prone to segmentation errors. We present a set of methodological solutions to these shortcomings that were developed to quantify these processes in cultured, ex vivo human breast tissue under the influence of breast cancer cells and allow for the study of ECM in primary breast tumors. Herein, we describe a method of quantifying fiber alignment that can analyze complex native ECM from scanning electron micrographs that does not preclude the use of replicates and a high-throughput mechanism of quantifying collagen content that is non-destructive. The use of these methods accurately recapitulated cancer cell-driven changes in fiber alignment and collagen deposition observed by visual inspection. Additionally, these methods successfully identified increased fiber alignment in primary human breast tumors when compared to human breast tissue and increased collagen deposition in lobular breast cancer when compared to ductal breast cancer. The successful quantification of fiber alignment and collagen deposition using these methods encourages their use for future studies of ECM dysregulation in human solid tumors.

17.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33876843

RESUMO

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-fos/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase 5/genética , Células MCF-7 , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias de Mama Triplo Negativas/genética
18.
Transl Oncol ; 14(6): 101046, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33761370

RESUMO

The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies. In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.

19.
Curr Med Chem ; 28(30): 6096-6109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33749548

RESUMO

Mitotic kinases have integral roles in cell processes responsible for cancer development and progression in all tumor types and are common targets for therapeutics. However, a large subset of the human kinome remains unexplored with respect to functionality in cancer systems. Within the mitotic kinases, the never-in-mitosis kinase (NEK) family is emerging as novel kinase targets in various cancer types. NEK5 is an understudied member of the NEK family. While there are more recent studies describing the physiologic function of NEK5, its role in cancer biology remains widely understudied. However, emerging studies implicate that NEK5 has potentially crucial functions in various solid tumors. In this review, we discuss current knowledge regarding the role of NEK5 in cancer and the implications of NEK5 expression and activity in tumor development and metastasis. We summarize current studies that examine NEK5 activity in diverse cancer systems and cellular processes. As an understudied kinase, there are currently no selective NEK5-targeting agents to test the effects of pharmacologic inhibition on cancer, although there exist recent advancements in this area. Here we also include an update on efforts to develop selective pharmacologic inhibition of NEK5, and we discuss the current direction of NEK5-targeting therapeutic development. The generation of selective NEK5 inhibitors is promising new targeted therapies for cancer growth and metastasis.


Assuntos
Mitose , Quinases Relacionadas a NIMA , Neoplasias , Humanos , Quinases Relacionadas a NIMA/genética , Neoplasias/tratamento farmacológico
20.
Oncol Lett ; 21(5): 380, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777204

RESUMO

Chemokine receptor 4 (CXCR4) and its ligand stromal-derived factor 1 (SDF-1) have well-characterized functions in cancer metastasis; however, the specific mechanisms through which CXCR4 promotes a metastatic and drug-resistant phenotype remain widely unknown. The aim of the present study was to demonstrate the application of a phenotypic screening approach using a small molecule inhibitor library to identify potential CXCR4-mediated signaling pathways. The present study demonstrated a new application of the Published Kinase Inhibitor Set (PKIS), a library of small molecule inhibitors from diverse chemotype series with varying levels of selectivity, in a phenotypic medium-throughput screen to identify potential mechanisms to pursue. Crystal violet staining and brightfield microscopy were employed to evaluate relative cell survival and changes to cell morphology in the screens. 'Hits' or lead active compounds in the first screen were PKIS inhibitors that reversed mesenchymal morphologies in CXCR4-activated breast cancer cells without the COOH-terminal domain (MCF-7-CXCR4-ΔCTD) and in the phenotypically mesenchymal triple-negative breast cancer cells (MDA-MB-231, BT-549 and MDA-MB-157), used as positive controls. In a following screen, the phenotypic and cell viability screen was used with a positive control that was both morphologically mesenchymal and had acquired fulvestrant resistance. Compounds within the same chemotype series were identified that exhibited biological activity in the screens, the 'active' inhibitors, were compared with inactive compounds. Relative kinase activity was obtained using published datasets to discover candidate kinase targets responsible for CXCR4 activity. MAP4K4 and MINK reversed both the mesenchymal and drug-resistant phenotypes, NEK9 and DYRK2 only reversed the mesenchymal morphology, and kinases, including ROS, LCK, HCK and LTK, altered the fulvestrant-resistant phenotype. Oligoarray experiments revealed pathways affected in CXCR4-activated cells, and these pathways were compared with the present screening approach to validate our screening tool. The oligoarray approach identified the integrin-mediated, ephrin B-related, RhoA, RAC1 and ErbB signaling pathways to be upregulated in MCF-7-CXCR4-ΔCTD cells, with ephrin B signaling also identified in the PKIS phenotypic screen. The present screening tool may be used to discover potential mechanisms of targeted signaling pathways in solid cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA