Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38410917

RESUMO

AIM: The purpose of this project was to compare the characteristics of two experimental murine models of primary intraocular lymphoma (PIOL) and determine which experimental model is most suitable for further investigational research to elucidate the pathophysiology of PIOL and to find new therapeutical strategies. METHODS: In both experimental models PIOL was induced in immunocompetent mice with intravitreal injection of syngeneic B-cell lymphoma cell lines. Murine strain C3H/HeN and cell line 38C13 were used in the first model and BALB/CaNn mice and cell line A20 in the second model. During the experiments, thorough clinical evaluation (using photo documentation, ultrasonography, and MRI) and histological evaluation were performed. RESULTS: In both models, the percentage of PIOL development was high, reaching nearly 80%. Disease progression was faster in C3H/HeN with exophthalmos occurring on average on day 10. Vitreous involvement was a predominant sign in the clinical presentation of this group. In BALB/CaNn mice exophthalmos occurred on average on day 22. The predominant clinical sign in the BALB/CaNn group was tumorous infiltration of the retina, optic disc, and tumorous retinal detachment. CONCLUSION: Slower progression of the disease in BALB/CaNn mice, greater possibility to examine the retina due to mild vitreous involvement, and later occurrence of exophthalmos makes this strain more suitable for further investigational research.

2.
BMJ Open ; 14(1): e076907, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216183

RESUMO

INTRODUCTION: Longitudinal studies can provide timely and accurate information to evaluate and inform COVID-19 control and mitigation strategies and future pandemic preparedness. The Optimise Study is a multidisciplinary research platform established in the Australian state of Victoria in September 2020 to collect epidemiological, social, psychological and behavioural data from priority populations. It aims to understand changing public attitudes, behaviours and experiences of COVID-19 and inform epidemic modelling and support responsive government policy. METHODS AND ANALYSIS: This protocol paper describes the data collection procedures for the Optimise Study, an ongoing longitudinal cohort of ~1000 Victorian adults and their social networks. Participants are recruited using snowball sampling with a set of seeds and two waves of snowball recruitment. Seeds are purposively selected from priority groups, including recent COVID-19 cases and close contacts and people at heightened risk of infection and/or adverse outcomes of COVID-19 infection and/or public health measures. Participants complete a schedule of monthly quantitative surveys and daily diaries for up to 24 months, plus additional surveys annually for up to 48 months. Cohort participants are recruited for qualitative interviews at key time points to enable in-depth exploration of people's lived experiences. Separately, community representatives are invited to participate in community engagement groups, which review and interpret research findings to inform policy and practice recommendations. ETHICS AND DISSEMINATION: The Optimise longitudinal cohort and qualitative interviews are approved by the Alfred Hospital Human Research Ethics Committee (# 333/20). The Optimise Study CEG is approved by the La Trobe University Human Ethics Committee (# HEC20532). All participants provide informed verbal consent to enter the cohort, with additional consent provided prior to any of the sub studies. Study findings will be disseminated through public website (https://optimisecovid.com.au/study-findings/) and through peer-reviewed publications. TRIAL REGISTRATION NUMBER: NCT05323799.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Estudos Longitudinais , Quarentena , Austrália
3.
Sci Rep ; 13(1): 18287, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880253

RESUMO

Moderate cold acclimation (MCA) is a non-invasive intervention mitigating effects of various pathological conditions including myocardial infarction. We aim to determine the shortest cardioprotective regimen of MCA and the response of ß1/2/3-adrenoceptors (ß-AR), its downstream signaling, and inflammatory status, which play a role in cell-survival during myocardial infarction. Adult male Wistar rats were acclimated (9 °C, 1-3-10 days). Infarct size, echocardiography, western blotting, ELISA, mitochondrial respirometry, receptor binding assay, and quantitative immunofluorescence microscopy were carried out on left ventricular myocardium and brown adipose tissue (BAT). MultiPlex analysis of cytokines and chemokines in serum was accomplished. We found that short-term MCA reduced myocardial infarction, improved resistance of mitochondria to Ca2+-overload, and downregulated ß1-ARs. The ß2-ARs/protein kinase B/Akt were attenuated while ß3-ARs translocated on the T-tubular system suggesting its activation. Protein kinase G (PKG) translocated to sarcoplasmic reticulum and phosphorylation of AMPKThr172 increased after 10 days. Principal component analysis revealed a significant shift in cytokine/chemokine serum levels on day 10 of acclimation, which corresponds to maturation of BAT. In conclusion, short-term MCA increases heart resilience to ischemia without any negative side effects such as hypertension or hypertrophy. Cold-elicited cardioprotection is accompanied by ß1/2-AR desensitization, activation of the ß3-AR/PKG/AMPK pathways, and an immunomodulatory effect.


Assuntos
Adrenérgicos , Infarto do Miocárdio , Ratos , Masculino , Animais , Adrenérgicos/metabolismo , Ratos Wistar , Proteínas Quinases Ativadas por AMP/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/patologia
4.
Health Res Policy Syst ; 21(1): 87, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649071

RESUMO

BACKGROUND: People living in rural areas have poorer health than their urban counterparts. Although rural health research centres have been promoted as vehicles for improving rural health by contributing evidence to address rural health disadvantage and building research capacity, their characteristics and evolution are poorly understood. Collaboration is known to have an important positive influence on research outputs and research quality. In this study we examine publication outputs from an Australian rural research centre to evaluate how researchers have engaged in research collaboration over a two-decade period. METHODS: A retrospective longitudinal study of publications in peer-reviewed journals from a rural research centre-University Centre for Rural Health (UCRH) -between January 2002 and December 2021. Organisational co-author networks across four periods (2002-2006; 2007-2011; 2012-2016; 2017-2021) were constructed based on author organisational affiliations and examined using social network analysis methods. Descriptive characteristics included organisation types, study design, region of study focus, thematic research trends, Aboriginal and Torres Strait Islander and female authorship, and journal characteristics. RESULTS: We identified 577 publications with 130 different UCRH-affiliated authors. Publications and the co-author network increased in number and diversity over each period, with an acceleration and a consolidation of the network in the final period. Over time there was an increase in publications related to Aboriginal and Torres Strait Islander health, coupled with an increase in Aboriginal and Torres Strait Islander authorship and collaborations with Aboriginal and Torres Strait Islander organisations; rise in female senior authorship and publication in quartile 1 journals. About two-thirds of publications make no reference to regional or remote populations. CONCLUSION: Collaboration in publications increased, expanded, and consolidated, which coincided with an increase in the number and diversity of both co-authoring organisations and UCRH-affiliated authors in the final period. The findings highlight the value of collaborations (including urban and international) in building and strengthening rural health research capacity. With increased capacity and consolidation of the network it is now imperative that research becomes more focussed on understanding and addressing rural health inequities.


Assuntos
Autoria , Conhecimento , Humanos , Feminino , Austrália , Estudos Longitudinais , Estudos Retrospectivos
5.
Front Chem ; 11: 1207984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426333

RESUMO

Large (120 nm) hexagonal NaYF4:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM. The UCNP@Ale-PEG and UCNP@Ale-PDMA particles were the least soluble in water and ALF, while the UCNP@PMVEMA particles were the most chemically stable in PBS. Green fluorescence of FITC-Ale-modified UCNPs was observed inside the cells, demonstrating successful internalization of particles into cells. The highest uptake was observed for neat UCNPs, followed by UCNP@Ale-PDMA and UCNP@PMVEMA. Viability of C6 cells and rat mesenchymal stem cells (rMSCs) growing in the presence of UCNPs was monitored by Alamar Blue assay. Culturing with UCNPs for 24 h did not affect cell viability. Prolonged incubation with particles for 72 h reduced cell viability to 40%-85% depending on the type of coating and nanoparticle concentration. The greatest decrease in cell viability was observed in cells cultured with neat UCNPs and UCNP@PMVEMA particles. Thanks to high upconversion luminescence, high cellular uptake and low toxicity, PDMA-coated hexagonal UCNPs may find future applications in cancer therapy.

6.
Eur J Med Chem ; 259: 115631, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473690

RESUMO

Following the discovery of 2-(3-methoxyphenyl)-3,4-dihydroquinazoline-4-one and 2-(3-methoxyphenyl)quinazoline-4-thione as potent, but non-specific activators of the human Constitutive Androstane Receptor (CAR, NR1I3), a series of quinazolinones substituted at the C2 phenyl ring was prepared to examine their ability to selectively modulate human CAR activity. Employing cellular and in vitro TR-FRET assays with wild-type CAR or its variant 3 (CAR3) ligand binding domains (LBD), several novel partial human CAR agonists and antagonists were identified. 2-(3-Methylphenyl) quinazolinone derivatives 7d and 8d acted as partial agonists with the recombinant CAR LBD, the former in nanomolar units (EC50 = 0.055 µM and 10.6 µM, respectively). Moreover, 7d did not activate PXR, and did not show any signs of cytotoxicity. On the other hand, 2-(4-bromophenyl)quinazoline-4-thione 7l possessed significant CAR antagonistic activity, although the compound displayed no agonistic or inverse agonistic activities. A compound possessing purely antagonistic effect was thus identified for the first time. These and related compounds may serve as a remedy in xenobiotic intoxication or, conversely, in suppression of undesirable hepatic CAR activation.


Assuntos
Receptor Constitutivo de Androstano , Receptores de Esteroides , Humanos , Receptores Citoplasmáticos e Nucleares , Ligantes , Quinazolinas/farmacologia , Tionas , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismo
7.
Anal Methods ; 15(23): 2823-2832, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191172

RESUMO

A novel ultra-high performance chromatography method with multichannel detection that allows fast, sensitive, and robust analysis of an antifungal drug terbinafine and its three main impurities ß-terbinafine, (Z)-terbinafine, and 4-methylterbinafine in just 5.0 min has been developed. Analysis of terbinafine is important in pharmaceutical analysis since it enables the detection of its impurities at very low concentrations. In this study, we focused on the development, optimization, and validation of the UHPLC method as well as its subsequent application in the evaluation of terbinafine and its three main impurities in the dissolution medium to reveal the incorporation of terbinafine in two poly(lactic-co-glycolic acid) (PLGA) carriers and testing of the drug release at pH 5.5. PLGA based drug delivery systems such as solid dispersions, thin films, microparticles, and nanoparticles are new favorable ways of terbinafine administration. PLGA features excellent tissue compatibility, biodegradation, and adjustable drug release profile. Our pre-formulation study indicates that poly(acrylic acid) branched PLGA polyester has more suitable properties than tripentaerythritol branched PLGA polyester. Therefore, the former is likely to enable design of a new drug delivery system for topically applied terbinafine that could facilitate its administration and increase patient compliance.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Terbinafina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Portadores de Fármacos/química , Cromatografia Líquida de Alta Pressão
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769046

RESUMO

Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, ca. 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.e., poly(ethylene glycol)-alendronate (PEG-Ale), poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale), and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). All the particles were characterized by TEM, DLS, FTIR, and spectrofluorometer to determine the morphology, hydrodynamic size and ξ-potential, composition, and upconversion luminescence. The degradability/dissolution of UCNPs in water, PBS, DMEM, or artificial lysosomal fluid (ALF) was evaluated using an ion-selective electrochemical method and UV-Vis spectroscopy. The dissolution that was more pronounced in PBS at elevated temperatures was decelerated by polymer coatings. The dissolution in DMEM was relatively small, but much more pronounced in ALF. PMVEMA with multiple anchoring groups provided better protection against particle dissolution in PBS than PEG-Ale and PDMA-Ale polymers containing only one reactive group. However, the cytotoxicity of the particles depended not only on their ability to rapidly degrade, but also on the type of coating. According to MTT, neat UCNPs and UCNP@PMVEMA were toxic for both rat cells (C6) and rat mesenchymal stem cells (rMSCs), which was in contrast to the UCNP@Ale-PDMA particles that were biocompatible. On the other hand, both the cytotoxicity and uptake of the UCNP@Ale-PEG particles by C6 and rMSCs were low, according to MTT assay and ICP-MS, respectively. This was confirmed by a confocal microscopy, where the neat UCNPs were preferentially internalized by both cell types, followed by the UCNP@PMVEMA, UCNP@Ale-PDMA, and UCNP@Ale-PEG particles. This study provides guidance for the selection of a suitable nanoparticle coating with respect to future biomedical applications where specific behaviors (extracellular deposition vs. cell internalization) are expected.


Assuntos
Nanopartículas , Polímeros , Ratos , Animais , Polímeros/química , Alendronato , Nanopartículas/química , Polietilenoglicóis/química , Água
9.
PLoS One ; 18(1): e0279916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607969

RESUMO

Stakeholder engagement is generally considered one of the most pertinent factors impacting project outcomes. However, there is lacking empirical evidence documenting patterns of stakeholder engagement and their potential differences between public, private and public-private partnership (PPP) projects. This study leverages social network research methods to capture and quantitively compare these engagement structures. Stakeholder network data were collected by an online questionnaire from 17 public, 30 private and 9 PPP projects. A series of network-based analyses were subsequently applied to the data at both the level of individual project stakeholders and entire project stakeholder ecologies. A statistically significant difference (p<0.05) exists among the network-level measures of network size, edge number, density and betweenness centralization across the three project types. Among these four network measures, the density varies significantly (p<0.05) between 'within budget' and cost overrun projects for the private and PPP projects. The top-5 stakeholder lists with respect to three node-level centrality values reveal distinctive differences across the three project types. To further interpret the data, exponential random graph models were also applied to determine the most statistically prevalent network motifs within each type of project. Again, statistically significant differences were found across these three project types. The findings consistently point to structural differences in patterns of stakeholder engagement across the public and private domain and illustrate the applicability of network data and analytical techniques to monitoring and managing complex webs of relationships among actors who affect and are affected by diverse types of projects.


Assuntos
Parcerias Público-Privadas , Participação dos Interessados , Ecologia , Inquéritos e Questionários
10.
Soc Networks ; 72: 108-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36188126

RESUMO

COVID-19 has resulted in dramatic and widespread social network interventions across the globe, with public health measures such as distancing and isolation key epidemiological responses to minimize transmission. Because these measures affect social interactions between people, the networked structure of daily lives is changed. Such largescale changes to social structures, present simultaneously across many different societies and touching many different people, give renewed significance to the conceptualization of social network interventions. As social network researchers, we need a framework for understanding and describing network interventions consistent with the COVID-19 experience, one that builds on past work but able to cast interventions across a broad societal framework. In this theoretical paper, we extend the conceptualization of social network interventions in these directions. We follow Valente (2012) with a tripartite categorization of interventions but add a multilevel dimension to capture hierarchical aspects that are a key feature of any society and implicit in any network. This multilevel dimension distinguishes goals, actions, and outcomes at different levels, from individuals to the whole of the society. We illustrate this extended taxonomy with a range of COVID-19 public health measures of different types and at multiple levels, and then show how past network intervention research in other domains can also be framed in this way. We discuss what counts as an effective network, an effective intervention, plausible causality, and careful selection and evaluation, as central to a full theory of network interventions.

11.
Life (Basel) ; 12(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36143419

RESUMO

High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.

12.
Adv Healthc Mater ; 11(22): e2201344, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36153823

RESUMO

Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.


Assuntos
Polímeros , Água , Camundongos , Animais , Distribuição Tecidual , Temperatura , Liberação Controlada de Fármacos
13.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159772

RESUMO

Highly complex nanoparticles combining multimodal imaging with the sensing of physical properties in biological systems can considerably enhance biomedical research, but reports demonstrating the performance of a single nanosized probe in several imaging modalities and its sensing potential at the same time are rather scarce. Gold nanoshells with magnetic cores and complex organic functionalization may offer an efficient multimodal platform for magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and fluorescence techniques combined with pH sensing by means of surface-enhanced Raman spectroscopy (SERS). In the present study, the synthesis of gold nanoshells with Mn-Zn ferrite cores is described, and their structure, composition, and fundamental properties are analyzed by powder X-ray diffraction, X-ray fluorescence spectroscopy, transmission electron microscopy, magnetic measurements, and UV-Vis spectroscopy. The gold surface is functionalized with four different model molecules, namely thioglycerol, meso-2,3-dimercaptosuccinate, 11-mercaptoundecanoate, and (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide, to analyze the effect of varying charge and surface chemistry on cells in vitro. After characterization by dynamic and electrophoretic light scattering measurements, it is found that the particles do not exhibit significant cytotoxic effects, irrespective of the surface functionalization. Finally, the gold nanoshells are functionalized with a combination of 4-mercaptobenzoic acid and 7-mercapto-4-methylcoumarin, which introduces a SERS active pH sensor and a covalently attached fluorescent tag at the same time. 1H NMR relaxometry, fluorescence spectroscopy, and PAI demonstrate the multimodal potential of the suggested probe, including extraordinarily high transverse relaxivity, while the SERS study evidences a pH-dependent spectral response.

14.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578773

RESUMO

Photoacoustic imaging, an emerging modality, provides supplemental information to ultrasound imaging. We investigated the properties of polypyrrole nanoparticles, which considerably enhance contrast in photoacoustic images, in relation to the synthesis procedure and to their size. We prepared polypyrrole nanoparticles by water-based redox precipitation polymerization in the presence of ammonium persulphate (ratio nPy:nOxi 1:0.5, 1:1, 1:2, 1:3, 1:5) or iron(III) chloride (nPy:nOxi 1:2.3) acting as an oxidant. To stabilize growing nanoparticles, non-ionic polyvinylpyrrolidone was used. The nanoparticles were characterized and tested as a photoacoustic contrast agent in vitro on an imaging platform combining ultrasound and photoacoustic imaging. High photoacoustic signals were obtained with lower ratios of the oxidant (nPy:nAPS ≥ 1:2), which corresponded to higher number of conjugated bonds in the polymer. The increasing portion of oxidized structures probably shifted the absorption spectra towards shorter wavelengths. A strong photoacoustic signal dependence on the nanoparticle size was revealed; the signal linearly increased with particle surface. Coated nanoparticles were also tested in vivo on a mouse model. To conclude, polypyrrole nanoparticles represent a promising contrast agent for photoacoustic imaging. Variations in the preparation result in varying photoacoustic properties related to their structure and allow to optimize the nanoparticles for in vivo imaging.

15.
J Org Chem ; 86(12): 8078-8088, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34032448

RESUMO

A striking dependence on the method of workup has been found for annulation of benzonitriles ArC≡N to N-methyl 2-toluamide (1), facilitated by n-BuLi (2 equiv): quenching the reaction by a slow addition of water produced the expected 1-isoquinolones 2; by contrast, slow pouring of the reaction mixture into water afforded the cyclic aminals 5 (retaining the NMe group of the original toluamide). The mechanism of the two processes is discussed in terms of the actual H+ concentration in the workup. Both 2 and 5 were then converted into the corresponding 1-chloroisoquinolines 3, coupling of which, mediated by (Ph3P)2NiCl2/Zn, afforded bis-isoquinolines 4.

16.
Colloids Surf B Biointerfaces ; 204: 111824, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991978

RESUMO

Magnetic γ-Fe2O3/CeO2 nanoparticles were obtained by precipitation of Ce(NO3)3 with ammonia in the presence of γ-Fe2O3 seeds. The formation of CeO2 nanoparticles on the seeds was confirmed by transmission electron microscopy linked with selected area electron diffraction, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, and dynamic light scattering. The γ-Fe2O3/CeO2 particle surface was functionalized with PEG-neridronate to improve the colloidal stability in PBS and biocompatibility. Chemical and in vitro biological assays proved that the nanoparticles, due to the presence of cerium oxide, effectively scavenged radicals, thus decreasing oxidative stress in the model cell line. PEG functionalization of the nanoparticles diminished their in vitro aggregation and facilitated lysosomal cargo degradation in cancer cells during autophagy, which resulted in concentration-dependent cytotoxicity of the nanoparticles. Finally, the iron oxide core allowed easy magnetic separation of the particles from liquid media and may enable monitoring of nanoparticle biodistribution in organisms using magnetic resonance imaging.


Assuntos
Cério , Nanopartículas de Magnetita , Nanopartículas , Antioxidantes/farmacologia , Compostos Férricos , Distribuição Tecidual
17.
Chaos ; 29(2): 023124, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30823710

RESUMO

As economic globalisation increases, inclination toward domestic protectionism is also increasing in many countries of the world. To improve the productivity and the resilience of national economies, it is important to understand the drivers and the barriers of the internatiolisation of economic activities. While internatiolisation of individual economic actors is difficult to explain using traditional theories, aggregate patterns may be explained to some extent. We take a network-centric perspective to describe the extent of corporate internatiolisation in different countries. Based on Newman's assortativity coefficient, we design a range of assortativity metrics which are appropriate in the firm network context. Using these, we quantify companies' appetite for internatiolisation in relation to the internatiolisation of their partners. We use the Factset Revere dataset, which is provided by FactSet Research Systems Inc., that captures global supply chain relationships between companies. We identify countries where the level of internationalisation is relatively high or relatively low, and we show that subtle differences in the assortativity metrics used change the ranking of countries significantly in terms of the assortativity correlation, highlighting that companies in different countries are prone to different types of internationalisation. Overall, we demonstrate that firms from most countries in the dataset studied have a slight preference to make supply chain relationships with other firms which have undergone a similar level of internationalisation, and other firms from their own country. The implications of our results are important for countries to understand the evolution of international relationships in their corporate environments, and how they compare to other nations in the world in this regard.

18.
Appl Netw Sci ; 2(1): 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30533513

RESUMO

Organizations create networks with one another, and these networks may in turn shape the organizations involved. Until recently, such complex dynamic processes could not be rigorously empirically analyzed because of a lack of suitable modeling and validation methods. Using stochastic actor-oriented models and unique longitudinal survey data on the changing structure of interfirm production networks in the automotive industry in Japan, this paper illustrates how to quantitatively assess and validate (1) the dynamic micro-mechanism by which organizations form their networks and (2) the role of the dynamic network structures in organizational performance. The applied model helps to explain the endogenous processes behind the recent diversification of Japanese automobile production networks. Specifically, testing the effects of network topology and network diffusion on organizational performance, the novel modeling framework enables us to discern that the restructuring of interorganizational networks led to the increase of Japanese automakers' production per employee, and not the reverse. Traditional models that do not allow for interaction between interorganizational structure and organizational agency misrepresent this mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA