Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Med Oncol ; 38(3): 24, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570712

RESUMO

A subset of colorectal cancer (CRC) with a mesenchymal phenotype (CMS4) displays an aggressive disease, with an increased risk of recurrence after surgery, reduced survival, and resistance to standard treatments. It has been shown that the AXL and TGFß signaling pathways are involved in epithelial-to-mesenchymal transition, migration, metastatic spread, and unresponsiveness to targeted therapies. However, the prognostic role of the combination of these biomarkers and the anti-tumor effect of AXL and TGFß inhibition in CRC still has to be assessed. To evaluate the role of AXL and TGFß as negative biomarker in CRC, we conducted an in-depth in silico analysis of CRC samples derived from the Gene Expression Omnibus. We found that AXL and TGFß receptors are upregulated in CMS4 tumors and are correlated with an increased risk of recurrence after surgery in stage II/III CRC and a reduced overall survival. Moreover, we showed that AXL receptor is differently expressed in human CRC cell lines. Dual treatment with the TGFß galunisertib and the AXL inhibitor, bemcentinib, significantly reduced colony formation and migration capabilities of tumor cells and displayed a strong anti-tumor activity in 3D spheroid cultures derived from patients with advanced CRC. Our work shows that AXL and TGFß receptors identify a subgroup of CRC with a mesenchymal phenotype and correlate with poor prognosis. Dual inhibition of AXL and TGFß could represent a novel therapeutic strategy for patients with this aggressive disease.


Assuntos
Adenocarcinoma/tratamento farmacológico , Benzocicloeptenos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo II/antagonistas & inibidores , Triazóis/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Esferoides Celulares , Receptor Tirosina Quinase Axl
2.
J Exp Clin Cancer Res ; 40(1): 15, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407715

RESUMO

BACKGROUND: Despite the advancements in new therapies for colorectal cancer (CRC), chemotherapy still constitutes the mainstay of the medical treatment. For this reason, new strategies to increase the efficacy of chemotherapy are desirable. Poly-ADP-Ribose Polymerase inhibitors (PARPi) have shown to increase the activity of DNA damaging chemotherapeutics used in the treatment of CRC, however previous clinical trials failed to validate these results and pointed out dose-limiting toxicities that hamper the use of such combinations in unselected CRC patients. Nevertheless, in these studies little attention was paid to the mutational status of homologous recombination repair (HRR) genes. METHODS: We tested the combination of the PARPi niraparib with either 5-fluorouracil, oxaliplatin or irinotecan (SN38) in a panel of 12 molecularly annotated CRC cell lines, encompassing the 4 consensus molecular subtypes (CMSs). Synergism was calculated using the Chou-Talalay method for drug interaction. A correlation between synergism and genetic alterations in genes involved in homologous recombination (HR) repair was performed. We used clonogenic assays, mice xenograft models and patient-derived 3D spheroids to validate the results. The induction of DNA damage was studied by immunofluorescence. RESULTS: We showed that human CRC cell lines, as well as patient-derived 3D spheroids, harboring pathogenic ATM mutations are significantly vulnerable to PARPi/chemotherapy combination at low doses, regardless of consensus molecular subtypes (CMS) and microsatellite status. The strongest synergism was shown for the combination of niraparib with irinotecan, and the presence of ATM mutations was associated to a delay in the resolution of double strand breaks (DSBs) through HRR and DNA damage persistence. CONCLUSIONS: This work demonstrates that a numerically relevant subset of CRCs carrying heterozygous ATM mutations may benefit from the combination treatment with low doses of niraparib and irinotecan, suggesting a new potential approach in the treatment of ATM-mutated CRC, that deserves to be prospectively validated in clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Indazóis/uso terapêutico , Irinotecano/uso terapêutico , Piperidinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Indazóis/farmacologia , Irinotecano/farmacologia , Camundongos , Camundongos Nus , Mutação , Piperidinas/farmacologia
3.
Eur J Cancer ; 138: 1-10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818762

RESUMO

BACKGROUND: RAS mutations are the only validated biomarkers in metastatic colorectal cancer (mCRC) for anti-epidermal growth factor receptor (EGFR) therapy. Limited clinical information is available on AXL expression, marker of epithelial to mesenchymal transition, in mCRC. METHODS: AXL was retrospectively assessed by immunohistochemistry in 307 patients. RAS wild-type (WT) patients (N = 136) received first-line anti-EGFR-based therapy; RAS mutant patients (N = 171) received anti-angiogenic-based regimens. Preclinical experiments were performed using human RAS WT CRC cell lines and xenograft models. AXL RNA levels were assessed in a cohort of patients with available samples at baseline and at progression to anti-EGFR treatment and in the GSE5851 dataset. RESULTS: AXL was expressed in 55/307 tumour tissues, correlating with worse survival in the overall population (AXL-positive, 23.7 months; AXL-negative, 30.8 months; HR, 1.455, P = 0.032) and in RAS WT patients (AXL-positive, 23.0 months; AXL-negative, 35.8 months; HR,1.780, P = 0.032). Progression-free survival (PFS) in the RAS WT cohort was shorter in the AXL-positive cohort (6.2 months versus 12.1 months; HR, 1.796, P = 0.013). Three-dimensional cultures obtained from a patient following anti-EGFR therapy resulted AXL-positive, showing resistance to anti-EGFR drugs and sensitivity to AXL inhibition. AXL transfection in CRC cell lines induced AXL overexpression and resistance to the EGFR blockade. At progression to cetuximab, 2/10 SW48-tumour xenograft mice showed AXL expression. Consistently, AXL RNA levels increased in 5/7 patients following anti-EGFR therapy. Moreover, in the GSE5851 dataset higher AXL RNA levels correlated with worse PFS with cetuximab in KRAS-exon2 WT chemorefractory patients. CONCLUSIONS: AXL is a marker of poor prognosis in mCRC with consistent clinical and preclinical evidences of involvement in primary and acquired resistance to anti-EGFR drugs in RAS WT patients.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Genes ras , Proteínas Proto-Oncogênicas/análise , Receptores Proteína Tirosina Quinases/análise , Animais , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Colorretais/química , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
4.
Cancers (Basel) ; 11(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557914

RESUMO

BACKGROUND: The clinical impact of the monoclonal antibody cetuximab targeting the EGFR in colorectal cancer (CRC) is widely recognized. Nevertheless, the onset of cetuximab resistance is a serious issue that limits the effectiveness of this drug in targeted therapies. Unraveling the molecular players involved in cancer resistance is the first step towards the identification of alternative signaling pathways that can be targeted to circumvent resistance mechanisms restoring the efficacy of therapeutic treatments in a tailored manner. METHODS: By applying a nanoLC-MS/MS TMT isobaric labeling-based approach, we have delineated a molecular hallmark of cetuximab-resistance in CRC. RESULTS: We identified macrophage migration inhibitory factor (MIF) as a molecular determinant capable of triggering cancer resistance in sensitive human CRC cells. Blocking the MIF axis in resistant cells by a selective MIF inhibitor restores cell sensitivity to cetuximab. The combined treatment with cetuximab and the MIF inhibitor further enhanced cell growth inhibition in CRC resistant cell lines with a synergistic effect depending on inhibition of key downstream effectors of the MAPK and AKT signaling pathways. CONCLUSIONS: Collectively, our results suggest the association of MIF signaling and its dysregulation to cetuximab drug resistance, paving the way to the development of personalized combination therapies targeting the MIF axis.

5.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118529, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31412274

RESUMO

Many cell stressors block protein translation, inducing formation of cytoplasmic aggregates. These aggregates, named stress granules (SGs), are composed by translationally stalled ribonucleoproteins and their assembly strongly contributes to cell survival. Composition and dynamics of SGs are thus important starting points for identifying critical factors of the stress response. In the present study we link components of the H/ACA snoRNP complexes, highly concentrated in the nucleoli and the Cajal bodies, to SG composition. H/ACA snoRNPs are composed by a core of four highly conserved proteins -dyskerin, Nhp2, Nop10 and Gar1- and are involved in several fundamental processes, including ribosome biogenesis, RNA pseudouridylation, stabilization of small nucleolar RNAs and telomere maintenance. By taking advantage of cells overexpressing a dyskerin splice variant undergoing a dynamic intracellular trafficking, we were able to show that H/ACA snoRNP components can participate in SG formation, this way contributing to the stress response and perhaps transducing signals from the nucleus to the cytoplasm. Collectively, our results show for the first time that H/ACA snoRNP proteins can have additional non-nuclear functions, either independently or interacting with each other, thus further strengthening the close relationship linking nucleolus to SG composition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Células Tumorais Cultivadas
6.
J Exp Clin Cancer Res ; 38(1): 236, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164152

RESUMO

BACKGROUND: Targeting the epidermal growth factor receptor (EGFR) either alone or in combination with chemotherapy is an effective treatment for patients with RAS wild-type metastatic colorectal cancer (mCRC). However, only a small percentage of mCRC patients receive clinical benefits from anti-EGFR therapies, due to the development of resistance mechanisms. In this regard, HER2 has emerged as an actionable target in the treatment of mCRC patients with resistance to anti-EGFR therapy. METHODS: We have used SW48 and LIM1215 human colon cancer cell lines, quadruple wild-type for KRAS, NRAS, BRAF and PI3KCA genes, and their HER2-amplified (LIM1215-HER2 and SW48-HER2) derived cells to perform in vitro and in vivo studies in order to identify novel therapeutic strategies in HER2 gene amplified human colorectal cancer. RESULTS: LIM1215-HER2 and SW48-HER2 cells showed over-expression and activation of the HER family receptors and concomitant intracellular downstream signaling including the pro-survival PI3KCA/AKT and the mitogenic RAS/RAF/MEK/MAPK pathways. HER2-amplified cells were treated with several agents including anti-EGFR antibodies (cetuximab, SYM004 and MM151); anti-HER2 (trastuzumab, pertuzumab and lapatinib) inhibitors; anti-HER3 (duligotuzumab) inhibitors; and MEK and PI3KCA inhibitors, such as refametinib and pictilisib, as single agents and in combination. Subsequently, different in vivo experiments have been performed. MEK plus PI3KCA inhibitors treatment determined the best antitumor activity. These results were validated in vivo in HER2-amplified patient derived tumor xenografts from three metastatic colorectal cancer patients. CONCLUSIONS: These results suggest that combined therapy with MEK and PI3KCA inhibitors could represent a novel and effective treatment option for HER2-amplified colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Amplificação de Genes , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/genética , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Ther ; 18(4): 845-855, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30824612

RESUMO

The EPHA2 tyrosine kinase receptor is implicated in tumor progression and targeted therapies resistance. We evaluated EPHA2 as a potential resistance marker to the antiepidermal growth factor receptor (EGFR) monoclonal antibody cetuximab in colorectal cancer. We studied activation of EPHA2 in a panel of human colorectal cancer cell lines sensitive or resistant to anti-EGFR drugs. The in vitro and in vivo effects of ALW-II-41-27 (an EPHA2 inhibitor) and/or cetuximab treatment were tested. Formalin-fixed paraffin-embedded tumor specimens from 82 RAS wild-type (WT) metastatic colorectal cancer patients treated with FOLFIRI + cetuximab as first-line therapy in the CAPRI-GOIM trial were assessed for EPHA2 expression by immunohistochemistry and correlated with treatment efficacy. EPHA2 was differentially activated in colorectal cancer cell lines. Combined treatment with ALW-II-41-27 plus cetuximab reverted primary and acquired resistance to cetuximab, causing cell growth inhibition, inducing apoptosis and cell-cycle G1-G2 arrest. In tumor xenograft models, upon progression to cetuximab, ALW-II-41-27 addition significantly inhibited tumor growth. EPHA2 protein expression was detected in 55 of 82 tumor samples, frequently expressed in less-differentiated and left-sided tumors. High levels of EPHA2 significantly correlated with worse progression-free survival [8.6 months; confidence interval (CI) 95%, 6.4-10.8; vs. 12.3 months; CI 95%, 10.4-14.2; P = 0.03] and with increased progression rate (29% vs. 9%, P = 0.02). A specific EPHA2 inhibitor reverts in vitro and in vivo primary and acquired resistance to anti-EGFR therapy. EPHA2 levels are significantly associated with worse outcome in patients treated with FOLFIRI + cetuximab. These results highlight EPHA2 as a potential therapeutic target in metastatic colorectal cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Efrina-A2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Biomarcadores Tumorais/metabolismo , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Neoplasias Colorretais/patologia , Efrina-A2/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Feminino , Fluoruracila/uso terapêutico , Humanos , Leucovorina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Intervalo Livre de Progressão , Interferência de RNA , Receptor EphA2 , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Exp Clin Cancer Res ; 38(1): 41, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691487

RESUMO

BACKGROUND: Previous studies showed that the combination of an anti-Epidermal growth factor (EGFR) and a MEK-inhibitor is able to prevent the onset of resistance to anti-EGFR monoclonal antibodies in KRAS-wild type colorectal cancer (CRC), while the same combination reverts anti-EGFR primary resistance in KRAS mutated CRC cell lines. However, rapid onset of resistance is a limit to combination therapies in KRAS mutated CRC. METHODS: We generated four different KRAS mutated CRC cell lines resistant to a combination of cetuximab (an anti-EGFR antibody) and refametinib (a selective MEK-inhibitor) after continuous exposure to increasing concentration of the drugs. We characterized these resistant cell lines by evaluating the expression and activation status of a panel of receptor tyrosine kinases (RTKs) and intracellular transducers by immunoblot and qRT-PCR. Oncomine comprehensive assay and microarray analysis were carried out to investigate new acquired mutations or transcriptomic adaptation, respectively, in the resistant cell lines. Immunofluorescence assay was used to show the localization of RTKs in resistant and parental clones. RESULTS: We found that PI3K-AKT pathway activation acts as an escape mechanism in cell lines with acquired resistance to combined inhibition of EGFR and MEK. AKT pathway activation is coupled to the activation of multiple RTKs such as HER2, HER3 and IGF1R, though its pharmacological inhibition is not sufficient to revert the resistant phenotype. PI3K pathway activation is mediated by autocrine loops and by heterodimerization of multiple receptors. CONCLUSIONS: PI3K activation plays a central role in the acquired resistance to the combination of anti-EGFR and MEK-inhibitor in KRAS mutated colorectal cancer cell lines. PI3K activation is cooperatively achieved through the activation of multiple RTKs such as HER2, HER3 and IGF1R.


Assuntos
Neoplasias Colorretais/patologia , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas
9.
Redox Biol ; 14: 557-565, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29132127

RESUMO

The human DKC1 gene encodes dyskerin, an evolutionarily conserved nuclear protein whose overexpression represents a common trait of many types of aggressive sporadic cancers. As a crucial component of the nuclear H/ACA snoRNP complexes, dyskerin is involved in a variety of essential processes, including telomere maintenance, splicing efficiency, ribosome biogenesis, snoRNAs stabilization and stress response. Although multiple minor dyskerin splicing isoforms have been identified, their functions remain to be defined. Considering that low-abundance splice variants could contribute to the wide functional repertoire attributed to dyskerin, possibly having more specialized tasks or playing significant roles in changing cell status, we investigated in more detail the biological roles of a truncated dyskerin isoform that lacks the C-terminal nuclear localization signal and shows a prevalent cytoplasmic localization. Here we show that this dyskerin variant can boost energy metabolism and improve respiration, ultimately conferring a ROS adaptive response and a growth advantage to cells. These results reveal an unexpected involvement of DKC1 in energy metabolism, highlighting a previously underscored role in the regulation of metabolic cell homeostasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético , Proteínas Nucleares/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
10.
Oncotarget ; 8(47): 82773-82783, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137301

RESUMO

PURPOSE: We investigated the effect of triple monoclonal antibody inhibition of EGFR to overcome acquired resistance to first generation of anti-EGFR inhibitors. EXPERIMENTAL DESIGN: MM151 is a mixture of three different monoclonal IgG1 antibodies directed toward three different, non-overlapping, epitopes of the EGFR. We performed an in vivo study by using human CRC cell lines (SW48, LIM 1215 and CACO2) which are sensitive to EGFR inhibitors, in order to evaluate the activity of MM151 as compared to standard anti-EGFR mAbs, such as cetuximab, as single agent or in a sequential strategy of combination MM151 with irinotecan (induction therapy) followed by MM151 with a selective MEK1/2 inhibitor (MEKi) (maintenance therapy). Furthermore, the ability of MM151 to overcome acquired resistance to cetuximab has been also evaluated in cetuximab-refractory CRC models. RESULTS: MM151 shown stronger antitumor activity as compared to cetuximab. The maintenance treatment with MM151 plus MEKi resulted the most effective therapeutic modality. In fact, this combination caused an almost complete suppression of tumor growth in SW48, LIM 1215 and CACO2 xenografts model at 30 week. Moreover, in this treatment group, mice with no evidence of tumor were more than double as compared to single agent treated mice. Its superior activity has also been demonstrated, in cetuximab-refractory CRC models. CONCLUSIONS: These results provide experimental evidence that more efficient and complete EGFR blockade may determine better antitumor activity and could contribute to prevent and/or overcome acquired resistance to EGFR inhibitors.

11.
Oncotarget ; 8(40): 68305-68316, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978118

RESUMO

PURPOSE: Regorafenib, an oral multikinase inhibitor, has demonstrated survival benefit in metastatic colorectal cancer (mCRC) patients that have progressed after all standard therapies. However, novel strategies to improve tolerability and enhance anti-cancer efficacy are needed. EXPERIMENTAL DESIGN: We have evaluated in vitro the effects of regorafenib in combination with silybin, a biologically active component extracted from the seeds of Silybum marianum, in a panel of human colon cancer cells. Furthermore, we have prospectively treated a cohort of 22 refractory mCRC patients with regorafenib plus silybin. RESULTS: Treatment with regorafenib determined a dose-dependent growth inhibition whereas treatment with silybin had no anti-proliferative effects among all cancer cells tested. The combined treatment with regorafenib and silybin induced synergistic anti-proliferative and apoptotic effects by blocking PI3K/AKT/mTOR intracellular pathway. Moreover, combined treatment with regorafenib and silybin increased the production of reactive oxygen species levels within cells. In an exploratory proof of concept clinical study in a cohort of 22 mCRC patients after failure of all standard therapies, the clinical activity of regorafenib in combination with silybin was assessed. A median progression-free survival of 10.0 months and a median overall survival of 17.6 months were observed in these patients. These results suggest that the combined treatment potentially increases the clinical efficacy of regorafenib. Moreover, due to its anti-oxidative properties, silybin could protect patients from drug-induced liver damages, allowing to continue an effective anti-cancer therapy. CONCLUSIONS: The present study suggests that silybin in combination with regorafenib is a promising strategy for treatment of metastatic colorectal patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA