Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005435

RESUMO

The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser-Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased cadherin dynamics and destabilization of tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167320, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936515

RESUMO

Postmenopausal women experience bone loss and weight gain. To date, crosstalk between estrogen receptor signals and nuclear factor-κB (NF-κB) has been reported, and estrogen depletion enhances bone resorption by osteoclasts via NF-κB activation. However, it is unclear when and in which tissues NF-κB is activated after menopause, and how NF-κB acts as a common signaling molecule for postmenopausal weight gain and bone loss. Therefore, we examined the role of NF-κB in bone and energy metabolism following menopause. NF-κB reporter mice, which can be used to measure NF-κB activation in vivo, were ovariectomized (OVX) and the luminescence intensity after OVX increased in the metaphyses of the long bones and perigonadal white adipose tissue, but not in the other tissues. OVX was performed on wild-type (WT) and p65 mutant knock-in (S534A) mice, whose mutation enhances the transcriptional activity of NF-κB. Weight gain with worsening glucose tolerance was significant in S534A mice after OVX compared with those of WT mice. The bone density of the sham group in WT or S534A mice did not change, whereas in the S534A-OVX group it significantly decreased due to the suppression of bone formation and increase in bone marrow adipocytes. Disulfiram, an anti-alcoholic drug, suppressed OVX-induced activation of NF-κB in the metaphyses of long bones and white adipose tissue (WAT), as well as weight gain and bone loss. Overall, the activation of NF-κB in the metaphyses of long bones and WAT after OVX regulates post-OVX weight gain and bone loss.

3.
Nat Commun ; 14(1): 8475, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123550

RESUMO

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.


Assuntos
Placa Neural , Tubo Neural , Sistema Nervoso , Ectoderma , Morfogênese
4.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808688

RESUMO

Myocardin-related transcription factors (Mrtfa and Mrtfb), also known as megakaryoblastic leukemia proteins (Mkl1/MAL and Mkl2), associate with serum response factor (Srf) to regulate transcription in response to actin dynamics, however, the functions of Mrtfs in early vertebrate embryos remain largely unknown. Here we document the requirement of Mrtfs for blastopore closure at gastrulation and neural plate folding in Xenopus early embryos. Both stimulation and inhibition of Mrtf activity caused similar gross morphological phenotypes, yet the effects on F-actin distribution and cell behavior were different. Suppressing Mrtf-dependent transcription reduced overall F-actin levels and inhibited apical constriction during gastrulation and neurulation. By contrast, constitutively active Mrtf caused tricellular junction remodeling and induced apical constriction in superficial ectoderm. The underlying mechanism appeared distinct from the one utilized by known apical constriction inducers. We propose that the regulation of apical constriction is among the primary cellular responses to Mrtf. Our findings highlight a dedicated role of specific transcription factors, Mrtfs, in early morphogenetic processes.

5.
Front Immunol ; 14: 1179007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143646

RESUMO

Periodontal disease is an infectious disease that affects many people worldwide. Disease progression destroys the alveolar bone and causes tooth loss. We have previously shown that alymphoplasia (aly/aly) mice harboring a loss-of-function mutation in the map3k14 gene, which is involved in p100 to p52 processing of the alternative NF-κB pathway, exhibited mild osteopetrosis due to decreased number of osteoclasts, suggesting the alternative NF-κB pathway as a potential drug target for the amelioration of bone disease. In the present study, wild-type (WT) and aly/aly mice were subjected to silk ligation to establish a periodontitis model. Alveolar bone resorption was suppressed in aly/aly mice by decreased numbers of osteoclasts in the alveolar bone in comparison to WT mice. Furthermore, the expression of receptor activator of NF-κB ligand (RANKL) and TNFα (cytokines involved in osteoclast induction in periligative gingival tissue) was decreased. When primary osteoblasts (POBs) and bone marrow cells (BMCs) derived from WT and aly/aly mice were prepared and co-cultured, osteoclasts were induced from WT-derived BMCs, regardless of the origin of the POBs, but hardly formed from aly/aly mouse-derived BMCs. Furthermore, the local administration of an NIK inhibitor, Cpd33, inhibited osteoclast formation and thereby inhibited alveolar bone resorption in the periodontitis model. Therefore, the NIK-mediated NF-κB alternative pathway can be a therapeutic target for periodontal disease.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Doenças Periodontais , Periodontite , Camundongos , Animais , NF-kappa B/metabolismo , Inflamação
6.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36798359

RESUMO

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. In this study, we evaluated morphology of the superficial cell layer in the Xenopus neural plate. At the stages corresponding to the onset of tissue folding, we observed the alternation of cells with apically constricting and apically expanding apical domains. The cells had a biased orientation along the anteroposterior (AP) axis. This apical domain heterogeneity required planar cell polarity (PCP) signaling and was especially pronounced at neural plate hinges. Vertex model simulations suggested that spatially dispersed isotropically constricting cells cause the elongation of their non-constricting counterparts along the AP axis. Consistent with this hypothesis, cell-autonomous induction of apical constriction in Xenopus ectoderm cells was accompanied by the expansion of adjacent non-constricting cells. Our observations indicate that a subset of isotropically constricting cells can initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the AP axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that neural folding relies on PCP-dependent transduction of mechanical signals between neuroepithelial cells.

7.
J Med Cases ; 13(8): 402-407, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36128067

RESUMO

Adenosarcomas are biphasic neoplasms that usually originate in the uterine corpus and comprise a benign epithelial component and a malignant stromal component. Uterine adenosarcomas typically present with abnormal genital bleeding, an enlarged uterus, and a tumor that protrudes into the endometrial cavity. These tumors rarely protrude through the cervical os and are often misdiagnosed as cervical polyps. We present the case of a patient with cervical adenosarcoma with characteristics different from those reported in previous cases. This tumor showed endophytic growth, which is rare in cervical adenosarcomas. No watery discharge or obvious genital bleeding was noted. Although the tumor measured 4 cm, vaginal bleeding was noted only once at 6 months before diagnosis and was in the form of faint brown discharge.

8.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35451459

RESUMO

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Assuntos
Actomiosina , Ectoderma , Actomiosina/metabolismo , Animais , Ectoderma/metabolismo , Morfogênese/fisiologia , Cadeias Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
9.
Bone ; 154: 116210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592494

RESUMO

Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).


Assuntos
Amelogênese , Proteína Substrato Associada a Crk/metabolismo , Proteínas do Esmalte Dentário , Ameloblastos/metabolismo , Animais , Proteínas do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Camundongos , Microtomografia por Raio-X
10.
Lab Invest ; 101(11): 1475-1483, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34504305

RESUMO

Oral malignant melanoma, which frequently invades the hard palate or maxillary bone, is extremely rare and has a poor prognosis. Bone morphogenetic protein (BMP) is abundantly expressed in bone matrix and is highly expressed in malignant melanoma, inducing an aggressive phenotype. We examined the role of BMP signaling in the acquisition of an aggressive phenotype in melanoma cells in vitro and in vivo. In five cases, immunohistochemistry indicated the phosphorylation of Smad1/5 (p-Smad1/5) in the nuclei of melanoma cells. In the B16 mouse and A2058 human melanoma cell lines, BMP2, BMP4, or BMP7 induces morphological changes accompanied by the downregulation of E-cadherin, and the upregulation of N-cadherin and Snail, markers of epithelial-mesenchymal transition (EMT). BMP2 also stimulates cell invasion by increasing matrix metalloproteinase activity in B16 cells. These effects were canceled by the addition of LDN193189, a specific inhibitor of Smad1/5 signaling. In vivo, the injection of B16 cells expressing constitutively activated ALK3 enhanced zygoma destruction in comparison to empty B16 cells by increasing osteoclast numbers. These results suggest that the activation of BMP signaling induces EMT, thus driving the acquisition of an aggressive phenotype in malignant melanoma.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Ósseas/secundário , Melanoma/secundário , Neoplasias Bucais/patologia , Proteínas Smad Reguladas por Receptor/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Masculino , Melanoma/metabolismo , Camundongos , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Transdução de Sinais
11.
Curr Top Dev Biol ; 145: 41-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34074535

RESUMO

Planar cell polarity (PCP) refers to the coordinated polarization of cells within the plane of a tissue. PCP is a controlled by a group of conserved proteins organized in a specific signaling pathway known as the PCP pathway. A hallmark of PCP signaling is the asymmetric localization of "core" PCP protein complexes at the cell cortex, although endogenous PCP cues needed to establish this asymmetry remain unknown. While the PCP pathway was originally discovered as a mechanism directing the planar organization of Drosophila epithelial tissues, subsequent studies in Xenopus and other vertebrates demonstrated a critical role for this pathway in the regulation of actomyosin-dependent morphogenetic processes, such as neural tube closure. Large size and external development of amphibian embryos allows live cell imaging, placing Xenopus among the best models of vertebrate neurulation at the molecular, cellular and organismal level. This review describes cross-talk between core PCP proteins and actomyosin contractility that ultimately leads to tissue-scale movement during neural tube closure.


Assuntos
Actomiosina/metabolismo , Polaridade Celular , Modelos Animais , Tubo Neural/embriologia , Neurulação , Xenopus laevis/embriologia , Animais , Humanos
12.
Eur J Pharmacol ; 895: 173881, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476655

RESUMO

OBJECTIVES: Volume-regulated anion channels (VRACs), expressed in various cells, play an important role in cell volume regulation. Despite being physiologically defined almost half a century ago, only the molecular candidates of VRAC, TMEM16A, LRRC8A, and bestrophin-1 (BEST1), are known. Here, we aimed to explore the functional significance of VRAC in, HST-1, an oral squamous cell carcinoma (OSCC) cell line. METHODS: Cell proliferation assays, RT-PCR, Western blot, and flow cytometry were used to estimate changes in gene expression and cell proliferation. Ion channel activity was recorded using the patch-clamp technique. Specific genes were knocked-down by siRNA assays. RESULTS: VRAC, identified as a hypotonicity-induced current, was highly functional and associated with the proliferation of HST-1 cells but not of HaCaT (a normal keratinocyte) cells. The pharmacological profile of VRAC in HST-1 was similar to that reported previously. DCPIB, a specific VRAC inhibitor, completely inhibited VRAC and proliferation of HST-1 cells, eventually leading to apoptosis. VRAC in HST-1 was attenuated by the knockdown of TMEM16A and LRRC8A, while knockdown of BEST1 affected cell proliferation. In situ proximity ligation assay showed that TMEM16A and LRRC8A co-localized under isotonic conditions (300 mOsM) but were separated under hypotonic conditions (250 mOsM) on the plasma membrane. CONCLUSIONS: We have found that VRAC acts to regulate the proliferation of human metastatic OSCC cells and the composition of VRAC may involve in the interactions between TMEM16A and LRRC8A in HST-1 cells.


Assuntos
Anoctamina-1/metabolismo , Proliferação de Células , Canais de Cloreto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/metabolismo , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/genética , Antineoplásicos/farmacologia , Apoptose , Bestrofinas/genética , Bestrofinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Ciclopentanos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Indanos/farmacologia , Ativação do Canal Iônico , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Ligação Proteica , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Neoplasias da Língua/patologia
13.
J Biol Chem ; 296: 100274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428938

RESUMO

The G protein-coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.


Assuntos
Inflamação/genética , Obesidade/genética , Osteocalcina/genética , Receptores Acoplados a Proteínas G/genética , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Teste de Tolerância a Glucose , Humanos , Inflamação/patologia , Insulina/genética , Resistência à Insulina/genética , Lipase/genética , Lipólise/genética , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia
14.
Lab Invest ; 101(1): 38-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901097

RESUMO

Epidermal growth factor receptor (EGFR) is highly expressed in several types of cancer cells including oral squamous cell carcinoma (OSCC). EGF/EGFR signaling is recognized as an important molecular target in cancer therapy. However, cancer cells often become tolerant to EGF/EGFR signaling-targeted therapies. In the tumor microenvironment, the tumor incites inflammation and the inflammation-derived cytokines make a considerable impact on cancer development. In addition, hyperosmolarity is also induced, but the role of osmotic stress in cancer development has not been fully understood. This study demonstrates molecular insights into hyperosmolarity effect on OSCC development and shows that NFAT5 transcription factor plays an important functional role in enhancing the oral cancer cell proliferation by inducing the EGFR translocation from the endoplasmic reticulum to the plasma membrane through increase the expression of DPAGT1, an essential enzyme for catalyzing the first committed step of N-linked protein glycosylation. These results suggest that hyperosmolarity-induced intra-nuclear translocation of NFAT5 essential for DPAGT1 activation and EGFR subcellular translocation responsible for OSCC tumor progression.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Pressão Osmótica , Microambiente Tumoral
15.
J Cell Sci ; 133(12)2020 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-32501287

RESUMO

Erythrocyte protein band 4.1 like 5 (EPB41L5) is an adaptor protein beneath the plasma membrane that functions to control epithelial morphogenesis. Here we report a previously uncharacterized role of EPB41L5 in controlling ciliary function. We found that EPB41L5 forms a complex with IQCB1 (previously known as NPHP5), a ciliopathy protein. Overexpression of EPB41L5 reduced IQCB1 localization at the ciliary base in cultured mammalian epithelial cells. Conversely, epb41l5 knockdown increased IQCB1 localization at the ciliary base. epb41l5-deficient zebrafish embryos or embryos expressing C-terminally modified forms of Epb41l5 developed cilia with reduced motility and exhibited left-right patterning defects, an outcome of abnormal ciliary function. We observed genetic synergy between epb41l5 and iqcb1. Moreover, EPB41L5 decreased IQCB1 interaction with CEP290, another ciliopathy protein and a component of the ciliary base and centrosome. Together, these observations suggest that EPB41L5 regulates the composition of the ciliary base and centrosome through IQCB1 and CEP290.


Assuntos
Cílios , Peixe-Zebra , Animais , Centrossomo , Proteínas do Citoesqueleto , Proteínas do Olho , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
16.
Bone ; 135: 115316, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32169603

RESUMO

Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo. Cpd33 inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis accompanied by a decrease in the expression of nfatc1, dc-stamp, and cathepsin K, markers of osteoclast differentiation, without affecting the cell viability, in a dose-dependent manner. Cdp33 specifically suppressed the RANKL-induced processing of p100 to p52 but not the phosphorylation of p65 or the degradation or resynthesis of IκBα in osteoclast precursors. Cpd33 also suppressed the bone-resorbing activity in mature osteoclasts. Furthermore, Cdp33 treatment prevented bone loss by suppressing the osteoclast formation without affecting the osteoblastic bone formation in ovariectomized mice. Taken together, NIK inhibitors may be a new option for patients with a reduced response to conventional pharmacotherapy or who have serious side effects.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Idoso , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas Serina-Treonina Quinases , Ligante RANK/metabolismo , Quinase Induzida por NF-kappaB
17.
Cell Biochem Funct ; 38(3): 300-308, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31887784

RESUMO

Podosome formation in osteoclasts is an important initial step in osteoclastic bone resorption. Mice lacking c-Src (c-Src-/- ) exhibited osteopetrosis due to a lack of podosome formation in osteoclasts. We previously identified p130Cas (Crk-associated substrate [Cas]) as one of c-Src downstream molecule and osteoclast-specific p130Cas-deficient (p130CasΔOCL-/- ) mice also exhibited a similar phenotype to c-Src-/- mice, indicating that the c-Src/p130Cas plays an important role for bone resorption by osteoclasts. In this study, we performed a cDNA microarray and compared the gene profiles of osteoclasts from c-Src-/- or p130CasΔOCL-/- mice with wild-type (WT) osteoclasts to identify downstream molecules of c-Src/p130Cas involved in bone resorption. Among several genes that were commonly downregulated in both c-Src-/- and p130CasΔOCL-/- osteoclasts, we identified kinesin family protein 1c (Kif1c), which regulates the cytoskeletal organization. Reduced Kif1c expression was observed in both c-Src-/- and p130CasΔOCL-/- osteoclasts compared with WT osteoclasts. Kif1c exhibited a broad tissue distribution, including osteoclasts. Knockdown of Kif1c expression using shRNAs in WT osteoclasts suppressed actin ring formation. Kif1c overexpression restored bone resorption subsequent to actin ring formation in p130CasΔOCL-/- osteoclasts but not c-Src-/- osteoclasts, suggesting that Kif1c regulates osteoclastic bone resorption in the downstream of p130Cas (191 words). SIGNIFICANCE OF THE STUDY: We previously showed that the c-Src/p130Cas (Cas) plays an important role for bone resorption by osteoclasts. In this study, we identified kinesin family protein 1c (Kif1c), which regulates the cytoskeletal organization, as a downstream molecule of c-Src/p130Cas axis, using cDNA microarray. Knockdown of Kif1c expression using shRNAs in wild-type osteoclasts suppressed actin ring formation. Kif1c overexpression restored bone resorption subsequent to actin ring formation in osteoclast-specific p130Cas-deficient (p130CasΔOCL-/- ) osteoclasts but not c-Src-/- osteoclasts, suggesting that Kif1c regulates osteoclastic bone resorption in the downstream of p130Cas.


Assuntos
Reabsorção Óssea , Proteína Substrato Associada a Crk/metabolismo , Regulação da Expressão Gênica , Cinesinas/metabolismo , Osteoclastos/metabolismo , Actinas/metabolismo , Animais , Osso e Ossos/metabolismo , Proteína Tirosina Quinase CSK/genética , Proteína Tirosina Quinase CSK/metabolismo , Células HEK293 , Heterozigoto , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosforilação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Dedos de Zinco
18.
J Cell Biochem ; 120(11): 18793-18804, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243813

RESUMO

Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 -/- ) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 -/- mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 -/- mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 -/- mice. Treatment with ß-glycerophosphate (ß-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 -/- mice. Finally, bone marrow cells from Bif-1 -/- mice showed a significantly higher colony-forming efficacy by the treatment with or without ß-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 -/- mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso Esponjoso/metabolismo , Homeostase , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Osso Esponjoso/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
19.
Bone ; 121: 29-41, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611922

RESUMO

Endochondral ossification is important for skeletal development. Recent findings indicate that the p65 (RelA) subunit, a main subunit of the classical nuclear factor-κB (NF-κB) pathway, plays essential roles in chondrocyte differentiation. Although several groups have reported that the alternative NF-κB pathway also regulates bone homeostasis, the role of the alternative NF-κB pathway in chondrocyte development is still unclear. Here, we analyzed the in vivo function of the alternative pathway on endochondral ossification using p100-deficient (p100-/-) mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. The alternative pathway was activated during the periarticular stage in wild-type mice. p100-/- mice exhibited dwarfism, and histological analysis of the growth plate revealed abnormal arrangement of chondrocyte columns and a narrowed hypertrophic zone. Consistent with these observations, the expression of hypertrophic chondrocyte markers, type X collagen (ColX) or matrix metalloproteinase 13, but not early chondrogenic markers, such as Col II or aggrecan, was suppressed in p100-/- mice. An in vivo BrdU tracing assay clearly demonstrated less proliferative activity in chondrocytes in p100-/- mice. These defects were partly rescued when the RelB gene was deleted in p100-/- mice. Taken together, the alternative NF-κB pathway may regulate chondrocyte proliferation and differentiation to maintain endochondral ossification.


Assuntos
NF-kappa B/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Condrócitos/metabolismo , Condrogênese/genética , Condrogênese/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esqueleto/metabolismo
20.
Zebrafish ; 16(1): 15-28, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30300574

RESUMO

Testicular tumors are the most common solid malignant tumors in men 20-35 years of age. Although most of testicular tumors are curable, current treatments still fail in 15%-20% of patients. However, insufficient understanding of the molecular basis and lack of animal models limit development of more effective treatments. This study reports the identification of a novel zebrafish mutant line, ns1402, which develops testicular germ cell tumors (TGCTs). While both male and female ns1402 mutants were fertile at young age, male ns1402 mutants became infertile as early as 9 months of age. This infertility was associated with progressive loss of mature sperm. Failure of spermatogenesis was, at least in part, explained by progressive loss of mature Leydig cells, a source of testosterone that is essential for spermatogenesis. Interestingly, TGCTs in ns1402 mutants contained a large number of Sertoli cells and gene expression profiles of Sertoli cells were altered before loss of mature Leydig cells. This suggests that changes in Sertoli cell properties happened first, followed by loss of mature Leydig cells and failure of spermatogenesis. Taken together, this study emphasizes the importance of cell-cell interactions and cell signaling in the testis for spermatogenesis and tissue homeostasis.


Assuntos
Doenças dos Peixes/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Peixe-Zebra , Animais , Modelos Animais de Doenças , Feminino , Doenças dos Peixes/fisiopatologia , Células Intersticiais do Testículo/fisiologia , Masculino , Mutação , Células de Sertoli/fisiologia , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA