Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325734

RESUMO

A combination of three-dimensional (3D) cell culturing and non-viral gene transfection is promising in improving outcomes of cell transplantation therapy. Herein, gene transfection profiles in 3D cell culture were compared between plasmid DNA (pDNA) and messenger RNA (mRNA) introduction, using mesenchymal stem cell (MSC) 3D spheroids. Green fluorescence protein (GFP) mRNA induced GFP protein expression in 77% of the cells in the spheroids, whereas only 34% of the cells became GFP positive following pDNA introduction. In mechanistic analyses, most of the cells in MSC spheroids were non-dividing, and pDNA failed to induce GFP expression in most of the non-dividing cells. In contrast, both dividing and non-dividing cells became GFP-positive after mRNA introduction, which led to a high overall percentage of GFP-positive cells in the spheroids. Consequently, mRNA encoding an osteogenic factor, runt-related transcription factor 2 (Runx2), allowed in vitro osteogenic differentiation of MSCs in spheroids more efficiently compared to Runx2 pDNA. Conclusively, mRNA exhibits high potential in gene transfection in 3D cell culture, in which the cell division rate is lower than that in monolayer culture, and the combination of mRNA introduction and 3D cell culture is a promising approach to improve outcomes of cell transplantation in future regenerative therapy.

2.
J Control Release ; 285: 1-11, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-29966689

RESUMO

Cell transplantation therapy needs engraftment efficiency improvement of transplanted cells to the host tissues. Ex vivo transfection of a pro-survival gene to transplanted cells is a possible solution; however prolonged expression and/or genomic integration of the gene can be cancer promoting. To supply pro-survival protein only when it is needed, we used mRNA transfection, which exhibits transient protein expression profiles without the risk of genomic integration. Ex vivo transfection of mRNA encoding Bcl-2, a pro-survival factor, led to enhanced hepatocyte engraftment in both of normal and diseased mouse liver, effectively supporting liver function in a model of chronic hepatitis. The transplanted hepatocytes maintained their viability and function in the liver for at least one month, though Bcl-2 expression from mRNA was sustained for just a few days. Mechanism analyses suggest that Bcl-2 inhibits Kupffer cell-mediated hepatocyte clearance, which occurs within 2 days after transplantation. Within 2 days, hepatocytes migrated to the liver parenchyma, presumably a suitable place for the hepatocytes to survive without Bcl-2 expression. Thus, the duration of Bcl-2 expression from mRNA was sufficient to achieve prolonged engraftment. Ex vivo mRNA transfection allows supply of pro-survival factors to transplanted cells with minimal safety concerns accompanying prolonged expression, providing an effective platform to improve engraftment efficiency in cell transplantation therapy.


Assuntos
Hepatócitos/transplante , Fígado/citologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Transfecção , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transfecção/métodos
3.
Biomaterials ; 113: 253-265, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27835820

RESUMO

Both efficiency and safety profiles are crucial for promotion of gene delivery systems towards practical applications. A promising template system was previously developed based on block catiomer of poly(ethylene glycol) (PEG)-b-poly{N'-[N-(2-aminoethyl)-2-aminoehtyl]aspartamide}-cholesteryl [PEG-PAsp(DET)-cholesteryl] with strategies of ligand conjugation at the α-terminus for specific affinity to the targeted cells and cholesteryl conjugation at the ω-terminus for structural stabilization to obtain systemic retention. Aiming for advocating this formulation towards practical applications, in the current study, the binding profile of this polymer to plasmid DNA (pDNA) was carefully studied to address an issue of toxicity origin. Quantification of free polymer composition confirmed that the toxicity mainly results from unbound polymer and polyplex micelle itself has negligible toxicity. This evaluation allowed for identifying an optimal condition to prepare safe polyplex micelles for systemic application that possess maximal polymer-binding but exclude free polymers. The identified polyplex micelles then faced a drawback of limited transfection efficiency due to the absence of free polymer, which is an acknowledged tendency found in various synthetic gene carriers. Thus, series of functional components was strategically compiled to improve the transfection efficiency such as attachment of cyclic (Arg-Gly-Asp) (cRGD) peptide as a ligand onto the polyplex micelles to facilitate cellular uptake, use of endosome membrane disruptive catiomer of PAsp(DET) for facilitating endosome escape along with use of the conjugated cholesteryl group to amplify the effect of PAsp(DET) on membrane disruption, so as to obtain efficient transfection. The mechanistic investigation respecting the appreciated pH dependent protonation behavior of PAsp(DET) permitted to depict an intriguing scenario how the block catiomers manage to escape from the endosome entrapment in response to the pH gradient. Subsequent systemic application to the pancreatic tumor demonstrated a capability of vascular targeting mediated by the cRGD ligand, which was directly confirmed based on in situ confocal laser scanning microscopy observation. Encouraging this result, the vascular targeting to transfect a secretable anti-angiogenic gene was attempted to treat the intractable pancreatic tumor with anticipation that the strategy could circumvent the intrinsic physiological barriers derived from hypovascular and fibrotic characters. The obtained therapeutic efficiency demonstrates promising utilities of the proposed formulation as a safe systemic gene delivery carrier in practical use.


Assuntos
DNA/administração & dosagem , Micelas , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Plasmídeos/administração & dosagem , Polietilenoglicóis/química , Proteínas/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA/genética , DNA/uso terapêutico , Terapia Genética/métodos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Plasmídeos/genética , Plasmídeos/uso terapêutico , Transfecção/métodos
4.
Biomaterials ; 82: 221-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763736

RESUMO

Systemic delivery of messenger RNA (mRNA) is technically challenging because mRNA is highly susceptible to enzymatic degradation in the blood circulation. In this study, we used a nanomicelle-based platform, prepared from mRNA and poly(ethylene glycol) (PEG)-polycation block copolymers. A cholesterol (Chol) moiety was attached to the ω-terminus of the block copolymer to increase the stability of the nanomicelle by hydrophobic interaction. After in vitro screening, polyaspartamide with four aminoethylene repeats in its side chain (PAsp(TEP)) was selected as the cationic segment of the block copolymer, because it contributes to enhance nuclease resistance and high protein expression from the mRNA. After intravenous injection, PEG-PAsp(TEP)-Chol nanomicelles showed significantly enhanced blood retention of mRNA in comparison to nanomicelles without Chol. We used the nanomicelles for treating intractable pancreatic cancer in a subcutaneous inoculation mouse model through the delivery of mRNA encoding an anti-angiogenic protein (sFlt-1). PEG-PAsp(TEP)-Chol nanomicelles generated efficient protein expression from the delivered mRNA in tumor tissue, resulting in remarkable inhibition of the tumor growth, whereas nanomicelles without Chol failed to show a detectable therapeutic effect. In conclusion, the stabilized nanomicelle system led to the successful systemic delivery of mRNA in therapeutic application, holding great promise for the treatment of various diseases.


Assuntos
Colesterol/química , Terapia Genética/métodos , Nanocápsulas/química , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , RNA Mensageiro/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Neoplasias Pancreáticas/genética , Tamanho da Partícula , Resultado do Tratamento
5.
Sci Rep ; 5: 15810, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26507781

RESUMO

Gene therapy is a promising approach for treating diseases that are closely associated with excessive apoptosis, because the gene can effectively and sustainably introduce anti-apoptotic factors into cells. However, DNA delivery poses the risk of random genomic integration, leading to overexpression of the delivered gene and cancer development. Messenger RNA (mRNA) can evade integration events in target cells. We examined the use of mRNA-based therapeutics for introducing anti-apoptotic factors by using a mouse model of fulminant hepatitis. For introducing mRNA into the liver, a synthesised polymer-based carrier of polyplex nanomicelles was used for hydrodynamic intravenous injection. Using GFP as a reporter, we demonstrate that mRNA delivery induced efficient protein expression in almost 100% of liver cells, while plasmid DNA (pDNA) delivery provided a smaller percentage of GFP-positive cells. Analyses using Cy5-labelled mRNA and pDNA revealed that efficient expression by mRNA was attributed to a simple intracellular mechanism, without the need for nuclear entry. Consistent with this observation, Bcl-2 mRNA was more effective on reducing apoptosis in the liver of mice with fulminant hepatitis than Bcl-2 pDNA. Therefore, mRNA-based therapeutics combined with an effective delivery system such as polyplex nanomicelles is a promising treatment for intractable diseases associated with excessive apoptosis.


Assuntos
Apoptose/genética , RNA Mensageiro/genética , Animais , DNA/genética , Expressão Gênica/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Plasmídeos/genética
6.
J Vis Exp ; (101): e52384, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274378

RESUMO

To improve the therapeutic effectiveness of cell transplantation, a transplantation system of genetically modified, injectable spheroids was developed. The cell spheroids are prepared in a culture system on micropatterned plates coated with a thermosensitive polymer. A number of spheroids are formed on the plates, corresponding to the cell adhesion areas of 100 µm diameter that are regularly arrayed in a two-dimensional manner, surrounded by non-adhesive areas that are coated by a polyethylene glycol (PEG) matrix. The spheroids can be easily recovered as a liquid suspension by lowering the temperature of the plates, and their structure is well maintained by passing them through injection needles with a sufficiently large caliber (over 27 G). Genetic modification is achieved by gene transfection using the original non-viral gene carrier, polyplex nanomicelle, which is capable of introducing genes into cells without disrupting the spheroid structure. For primary hepatocyte spheroids transfected with a luciferase-expressing gene, the luciferase is sustainably obtained in transplanted animals, along with preserved hepatocyte function, as indicated by albumin expression. This system can be applied to a variety of cell types including mesenchymal stem cells.


Assuntos
Técnicas de Cultura de Células/métodos , Transplante de Células/métodos , Hepatócitos/fisiologia , Esferoides Celulares/fisiologia , Transfecção/métodos , Animais , Adesão Celular , Técnicas de Cultura de Células/instrumentação , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/transplante , Luciferases/biossíntese , Luciferases/genética , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Esferoides Celulares/citologia , Esferoides Celulares/transplante , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA