Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Disord Drug Targets ; 23(5): e090323214508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892121

RESUMO

BACKGROUND: Tuberculosis is the second leading cause of death from infectious diseases worldwide. Multidrug-resistant Mycobacterium tuberculosis is spreading throughout the world, creating a crisis. Hence, there is a need to develop anti-tuberculosis drugs with novel structures and versatile mechanisms of action. OBJECTIVE: In this study, we identified antimicrobial compounds with a novel skeleton that inhibits mycobacterium decaprenylphosphoryl-ß-D-ribose oxidase (DprE1). METHODS: A multi-step, in silico, structure-based drug screening identified potential DprE1 inhibitors from a library of 154,118 compounds. We experimentally verified the growth inhibitory effects of the eight selected candidate compounds against Mycobacterium smegmatis. Molecular dynamics simulations were performed to understand the mechanism of molecular interactions between DprE1 and ompound 4. RESULTS: Eight compounds were selected through in silico screening. Compound 4 showed strong growth inhibition against M. smegmatis. Molecular dynamics simulation (50 ns) predicted direct and stable binding of Compound 4 to the active site of DprE1. CONCLUSION: The structural analysis of the novel scaffold in Compound 4 can pave way for antituberculosis drug development and discovery.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Ribose/metabolismo , Ribose/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo
2.
Appl Microbiol Biotechnol ; 105(8): 3145-3157, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33846822

RESUMO

Polymers of basic amino acids function as polycationic compounds under physiological conditions and exhibit intriguing biological properties, such as antimicrobial and antiviral activities, immunopotentiating ability, and DNA-binding activity. Poly(ε-L-lysine) (ε-PL) produced by some strains of Streptomyces spp. is a cationic homopolymer of L-lysine linking between ε-amino and α-carboxylic acid functional groups and has been used as a food preservative based on its biocompatibility and biodegradability. An ε-PL-producing strain of Streptomyces sp. USE-33 was found to secrete a novel polycationic substance into its culture broth along with ε-PL. High-performance liquid chromatography analyses and one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) experiments, accompanied by NMR titration studies, revealed that the secreted substance was poly[ß-(L-diaminopropionyl-L-diaminopropionic acid)], PAP, characterized by an isopeptide backbone linking between the ß-amino and α-carboxylic acid groups of L-α,ß-diaminopropionic acid (L-Dpr) with pendent L-Dpr residues. PAP had a molecular weight of 500 to 1400, and copolymers composed of the two amino acids L-Dpr and L-lysine were not detected in the producer strain USE-33. The strain coproduced high levels of the two poly(amino acid)s in the presence of glycerol, citrate, and ammonium sulfate at pH 4.0 in a two-stage cultivation procedure. PAP exhibited strong inhibitory activities against several yeasts and weaker activities against bacteria than ε-PL. PAP may share a number of biological functions with ε-PL, and the use of PAP along with ε-PL has potential as a specific and advanced material for technical applications in various fields.Key points• Novel cationic poly(amino acid) was found in an ε-PL-producing Streptomyces species.• The l-α,ß-diaminopropionic acid polymer was characterized by a comb-like structure.• The novel poly(amino acid), PAP, exhibited antibacterial and antifungal activities.


Assuntos
Streptomyces , Fermentação , Polilisina , Polímeros , beta-Alanina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA