Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Neuron ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38843838

RESUMO

Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.

2.
Ann Neurol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771066

RESUMO

OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024.

3.
Sci Rep ; 14(1): 7129, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531908

RESUMO

Cognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled. MPRAGE on 3 T MRI was acquired and segmented. The TBV and TBV-adjusted regional brain volumes were compared between groups, and the relationship between the neuropsychological test scores and the regional brain volumes were evaluated. Total brain volume (TBV) and regional brain volumes of the mammillary bodies (MBs), hippocampi, amygdalae, thalami, caudate nuclei, and corpus callosum (CC) were estimated using the SPM12 and ITK-SNAP tools. In the rmTBI group, the regional brain volume/TBV ratio (rmTBI vs. control group, Mann-Whitney U test, p < 0.05) underwent partial correlation analysis, adjusting for age and sex, to assess its connection with neuropsychological test results. Compared with the control group, the rmTBI group showed significantly lower the MBs volume/TBV ratio (0.13 ± 0.05 vs. 0.19 ± 0.03 × 10-3, p < 0.001). The MBs volume/TBV ratio correlated with visual memory, as assessed, respectively, by the Rey-Osterrieth Complex Figure test delayed recall (ρ = 0.62, p < 0.001). In conclusion, retired athletes with rmTBI have MB atrophy, potentially contributing to memory impairment linked to the Papez circuit disconnection.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Humanos , Corpos Mamilares , Encéfalo , Transtornos da Memória/etiologia , Atletas/psicologia , Lesões Encefálicas Traumáticas/complicações
4.
Brain Commun ; 6(2): fcae075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510212

RESUMO

Frontotemporal dementia refers to a group of neurodegenerative disorders with diverse clinical and neuropathological features. In vivo neuropathological assessments of frontotemporal dementia at an individual level have hitherto not been successful. In this study, we aim to classify patients with frontotemporal dementia based on topologies of tau protein aggregates captured by PET with 18F-florzolotau (aka 18F-APN-1607 and 18F-PM-PBB3), which allows high-contrast imaging of diverse tau fibrils in Alzheimer's disease as well as in non-Alzheimer's disease tauopathies. Twenty-six patients with frontotemporal dementia, 15 with behavioural variant frontotemporal dementia and 11 with other frontotemporal dementia phenotypes, and 20 age- and sex-matched healthy controls were included in this study. They underwent PET imaging of amyloid and tau depositions with 11C-PiB and 18F-florzolotau, respectively. By combining visual and quantitative analyses of PET images, the patients with behavioural variant frontotemporal dementia were classified into the following subgroups: (i) predominant tau accumulations in frontotemporal and frontolimbic cortices resembling three-repeat tauopathies (n = 3), (ii) predominant tau accumulations in posterior cortical and subcortical structures indicative of four-repeat tauopathies (n = 4); (iii) amyloid and tau accumulations consistent with Alzheimer's disease (n = 4); and (iv) no overt amyloid and tau pathologies (n = 4). Despite these distinctions, clinical symptoms and localizations of brain atrophy did not significantly differ among the identified behavioural variant frontotemporal dementia subgroups. The patients with other frontotemporal dementia phenotypes were also classified into similar subgroups. The results suggest that PET with 18F-florzolotau potentially allows the classification of each individual with frontotemporal dementia on a neuropathological basis, which might not be possible by symptomatic and volumetric assessments.

5.
Neuroimage Clin ; 41: 103560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147791

RESUMO

In Alzheimer's disease (AD), aggregated abnormal proteins induce neuronal dysfunction. Despite the evidence supporting the association between tau proteins and brain atrophy, further studies are needed to explore their link to neuronal dysfunction in the human brain. To clarify the relationship between neuronal dysfunction and abnormal proteins in AD-affected brains, we conducted magnetic resonance spectroscopic imaging (MRSI) and assessed the neurofilament light chain plasma levels (NfL). We evaluated tau and amyloid-ß depositions using standardized uptake value ratios (SUVRs) of florzolotau (18F) for tau and 11C-PiB for amyloid-ß positron emission tomography in the same patients. Heatmaps were generated to visualize Z scores of glutamate to creatine (Glu/Cr) and N-acetylaspartate to creatine (NAA/Cr) ratios using data from healthy controls. In AD brains, Z score maps revealed reduced Glu/Cr and NAA/Cr ratios in the gray matter, particularly in the right dorsolateral prefrontal cortex (rDLPFC) and posterior cingulate cortex (PCC). Glu/Cr ratios were negatively correlated with florzolotau (18F) SUVRs in the PCC, and plasma NfL levels were elevated and negatively correlated with Glu/Cr (P = 0.040, r = -0.50) and NAA/Cr ratios (P = 0.003, r = -0.68) in the rDLPFC. This suggests that the abnormal tau proteins in AD-affected brains play a role in diminishing glutamate levels. Furthermore, neuronal dysfunction markers including Glu/tCr and NAA/tCr could potentially indicate favorable clinical outcomes. Using MRSI provided spatial information about neural dysfunction in AD, enabling the identification of vulnerabilities in the rDLPFC and PCC within the AD's pathological context.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Creatina/metabolismo , Estudos de Casos e Controles , Imageamento por Ressonância Magnética , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/patologia , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética , Biomarcadores/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
6.
J Alzheimers Dis ; 96(3): 1253-1265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980663

RESUMO

BACKGROUND: Deterioration of the oral environment is one of the risk factors for dementia. A previous study of an Alzheimer's disease (AD) model mouse suggests that tooth loss induces denervation of the mesencephalic trigeminal nucleus and neuroinflammation, possibly leading to accelerated tau dissemination from the nearby locus coeruleus (LC). OBJECTIVE: To elucidate the relevance of oral conditions and amyloid-ß (Aß) and tau pathologies in human participants. METHODS: We examined the number of remaining teeth and the biofilm-gingival interface index in 24 AD-spectrum patients and 19 age-matched healthy controls (HCs). They also underwent positron emission tomography (PET) imaging of Aß and tau with specific radiotracers, 11C-PiB and 18F-PM-PBB3, respectively. All AD-spectrum patients were Aß-positive, and all HCs were Aß-negative. We analyzed the correlation between the oral parameters and radiotracer retention. RESULTS: No differences were found in oral conditions between the AD and HC groups. 11C-PiB retentions did not correlate with the oral indices in either group. In AD-spectrum patients, brain-wide, voxel-based image analysis highlighted several regions, including the LC and associated brainstem substructures, as areas where 18F-PM-PBB3 retentions negatively correlated with the remaining teeth and revealed the correlation of tau deposits in the LC (r = -0.479, p = 0.018) primarily with the hippocampal and neighboring areas. The tau deposition in none of the brain regions was associated with the periodontal status. CONCLUSIONS: Our findings with previous preclinical evidence imply that tooth loss may enhance AD tau pathogenesis, promoting tau spreading from LC to the hippocampal formation.


Assuntos
Doença de Alzheimer , Perda de Dente , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau , Perda de Dente/complicações , Perda de Dente/diagnóstico por imagem
7.
Ann Neurol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703428

RESUMO

OBJECTIVE: Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS: The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS: Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION: We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.

8.
Front Psychiatry ; 14: 1215429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743992

RESUMO

Background: Posttraumatic stress disorder (PTSD) can be a source of significant social and daily distress in autism spectrum disorder (ASD). Compared to typically developed (TD) individuals, people with ASD are at an increased risk of adverse childhood experiences (ACEs), which can result in abnormal neuronal development. However, whether or how ACEs influence abnormal neural development and PTSD symptoms in ASD has not been fully elucidated. Methods: Thirty-nine TD individuals and 41 individuals with ASD underwent T1-weighted magnetic resonance imaging and neurite orientation dispersion and density imaging (NODDI), with axonal and dendritic densities assessed in terms of the orientation dispersion index and neurite density index (NDI), respectively. Voxel-based analyses were performed to explore the brain regions associated with PTSD symptoms, and the relationships between the severity of ACEs and PTSD symptoms and NODDI parameters in the extracted brain regions were examined. Results: There was a significant positive association between PTSD symptom severity and NDI in the bilateral supplementary motor area; right superior frontal, left supramarginal, and right superior temporal gyrus; and right precuneus in the ASD group, but not in the TD group. ACE severity was significantly associated with NDI in the right superior frontal and left supramarginal gyrus and right precuneus in the ASD group. Moreover, NDI in the right precuneus mainly predicted the severity of PTSD symptoms in the ASD group, but not the TD group. Conclusion: These results suggest that ACE-associated higher neurite density is of clinical importance in the pathophysiology of PTSD symptoms in ASD.

9.
Eur J Nucl Med Mol Imaging ; 50(13): 3928-3936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581725

RESUMO

PURPOSE: The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS: We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS: We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION: We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.


Assuntos
Encéfalo , Dopamina , Humanos , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
10.
Sci Rep ; 13(1): 11655, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468523

RESUMO

Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.


Assuntos
Transtorno Autístico , Glutamina , Masculino , Adulto , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Transtorno Autístico/metabolismo , Astrócitos/metabolismo , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo
11.
J Psychiatr Res ; 161: 316-323, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996724

RESUMO

Sensory over-responsivity (SOR) causes social and daily distress in individuals with autism spectrum disorder (ASD). Compared to typically developed (TD) individuals, ASD individuals are at higher risk of adverse childhood experiences (ACEs), which induce abnormal neuronal development. However, whether or how ACEs are associated with abnormal neural development and SOR in ASD remains to be determined. Forty-five individuals with ASD and 43 TD individuals underwent T1-weighted and neurite orientation dispersion and density imaging; the axonal and dendritic densities were defined as the neurite density index (NDI). Voxel-based analyses were performed to explore the brain regions associated with SOR. The relationships between severity of ACEs and SOR, and NDI in the brain regions were examined. ASD individuals showed a significantly positive association between SOR severity and NDI in the right superior temporal gyrus (STG), which was not found in TD individuals. Severity of ACEs correlated significantly with that of SOR and NDI in the right STG in ASD; ASD individuals having severe SOR showed significantly higher NDI in the right STG than those with mild SOR and TD individuals. In individuals with ASD, NDI in the right STG, but not ACEs, could predict the severity of SOR, which was not shown in TD subjects. Our findings suggest that severe ACEs are involved in excessive neurite density in the right STG in ASD. ACE-associated excessive neurite density in the right STG is critical for SOR in ASD, which may be a therapeutic target in the future.


Assuntos
Experiências Adversas da Infância , Transtorno do Espectro Autista , Humanos , Neuritos , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lobo Temporal , Encéfalo/diagnóstico por imagem
12.
J Neurol Sci ; 444: 120514, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36473346

RESUMO

Patients with progressive supranuclear palsy (PSP) frequently exhibit apathy but the neuropathological processes leading to this phenotype remain elusive. We aimed to examine the involvement of tau protein depositions, oxidative stress (OS), and neuronal loss in the apathetic manifestation of PSP. Twenty patients with PSP and twenty-three healthy controls were enrolled. Tau depositions and brain volumes were evaluated via positron-emission tomography (PET) using a specific probe, 18F-PM-PBB3, and magnetic resonance imaging, respectively. Glutathione (GSH) levels in the anterior and posterior cingulate cortices were quantified by magnetic resonance spectroscopy. Tau pathologies were observed in the subcortical and cortical structures of the patient brains. The angular gyrus exhibited a positive correlation between tau accumulations and apathy scale (AS). Although PSP cases did not show GSH level alterations compared with healthy controls, GSH levels in posterior cingulate cortex were correlated with AS and tau depositions in the angular gyrus. Marked atrophy was observed in subcortical areas, and gray matter volumes in the inferior frontal gyrus and anterior cingulate cortex were positively correlated with AS but showed no correlation with tau depositions and GSH levels. Path analysis highlighted synergistic contributions of tau pathologies and GSH reductions in the posterior cortex to AS, in parallel with associations of gray matter atrophy in the anterior cortex with AS. Apathetic phenotypes may arise from PET-visible tau aggregation and OS compromising the neural circuit resilience in the posterior cortex, along with neuronal loss, with neither PET-detectable tau pathologies nor OS in the anterior cortex.


Assuntos
Apatia , Paralisia Supranuclear Progressiva , Humanos , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/complicações , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Estresse Oxidativo
13.
Schizophr Bull ; 49(3): 688-696, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36458958

RESUMO

BACKGROUND AND HYPOTHESIS: Phosphodiesterase 10A (PDE10A) is a highly expressed enzyme in the basal ganglia, where cortical glutamatergic and midbrain dopaminergic inputs are integrated. Therapeutic PDE10A inhibition effects on schizophrenia have been reported previously, but the status of this molecule in the living patients with schizophrenia remains elusive. Therefore, this study aimed to investigate the central PDE10A status in patients with schizophrenia and examine its relationship with psychopathology, cognition, and corticostriatal glutamate levels. STUDY DESIGN: This study included 27 patients with schizophrenia, with 5 antipsychotic-free cases, and 27 healthy controls. Positron emission tomography with [18F]MNI-659, a specific PDE10A radioligand, was employed to quantify PDE10A availability by measuring non-displaceable binding potential (BPND) of the ligand in the limbic, executive, and sensorimotor striatal functional subregions, and in the pallidum. BPND estimates were compared between patients and controls while controlling for age and gender. BPND correlations were examined with behavioral and clinical measures, along with regional glutamate levels quantified by the magnetic resonance spectroscopy. STUDY RESULTS: Multivariate analysis of covariance demonstrated a significant main effect of diagnosis on BPND (p = .03). A posthoc test showed a trend-level higher sensorimotor striatal BPND in patients, although it did not survive multiple comparison corrections. BPND in controls in this subregion was significantly and negatively correlated with the Tower of London scores, a cognitive subtest. Striatal or dorsolateral prefrontal glutamate levels did not correlate significantly with BPND in either group. CONCLUSIONS: The results suggest altered striatal PDE10A availability and associated local neural dysfunctions in patients with schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Gânglios da Base , Glutamatos
14.
Neuroimage ; 264: 119763, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427751

RESUMO

Positron emission tomography (PET) with 18F-PM-PBB3 (18F-APN-1607, 18F-Florzolotau) enables high-contrast detection of tau depositions in various neurodegenerative dementias, including Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). A simplified method for quantifying radioligand binding in target regions is to employ the cerebellum as a reference (CB-ref) on the assumption that the cerebellum has minimal tau pathologies. This procedure is typically valid in AD, while FTLD disorders exemplified by progressive supranuclear palsy (PSP) are characterized by occasional tau accumulations in the cerebellum, hampering the application of CB-ref. The present study aimed to establish an optimal method for defining reference tissues on 18F-PM-PBB3-PET images of AD and non-AD tauopathy brains. We developed a new algorithm to extract reference voxels with a low likelihood of containing tau deposits from gray matter (GM-ref) or white matter (WM-ref) by a bimodal fit to an individual, voxel-wise histogram of the radioligand retentions and applied it to 18F-PM-PBB3-PET data obtained from age-matched 40 healthy controls (HCs) and 23 CE, 40 PSP, and five other tau-positive FTLD patients. PET images acquired at 90-110 min after injection were averaged and co-registered to corresponding magnetic resonance imaging space. Subsequently, we generated standardized uptake value ratio (SUVR) images estimated by CB-ref, GM-ref and WM-ref, respectively, and then compared the diagnostic performances. GM-ref and WM-ref covered a broad area in HCs and were free of voxels located in regions known to bear high tau burdens in AD and PSP patients. However, radioligand retentions in WM-ref exhibited age-related declines. GM-ref was unaffected by aging and provided SUVR images with higher contrast than CB-ref in FTLD patients with suspected and confirmed corticobasal degeneration. The methodology for determining reference tissues as optimized here improves the accuracy of 18F-PM-PBB3-PET measurements of tau burdens in a wide range of neurodegenerative illnesses.


Assuntos
Cerebelo , Tomografia por Emissão de Pósitrons , Tauopatias , Proteínas tau , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Tomografia por Emissão de Pósitrons/normas , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/análise , Proteínas tau/metabolismo , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Padrões de Referência
15.
Mov Disord ; 37(11): 2236-2246, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054492

RESUMO

BACKGROUND: We recently developed a positron emission tomography (PET) probe, [18 F]PM-PBB3, to detect tau lesions in diverse tauopathies, including mixed three-repeat and four-repeat (3R + 4R) tau fibrils in Alzheimer's disease (AD) and 4R tau aggregates in progressive supranuclear palsy (PSP). For wider availability of this technology for clinical settings, bias-free quantitative evaluation of tau images without a priori disease information is needed. OBJECTIVE: We aimed to establish tau PET pathology indices to characterize PSP and AD using a machine learning approach and test their validity and tracer capabilities. METHODS: Data were obtained from 50 healthy control subjects, 46 patients with PSP Richardson syndrome, and 37 patients on the AD continuum. Tau PET data from 114 regions of interest were subjected to Elastic Net cross-validation linear classification analysis with a one-versus-the-rest multiclass strategy to obtain a linear function that discriminates diseases by maximizing the area under the receiver operating characteristic curve. We defined PSP- and AD-tau scores for each participant as values of the functions optimized for differentiating PSP (4R) and AD (3R + 4R), respectively, from others. RESULTS: The discriminatory ability of PSP- and AD-tau scores assessed as the area under the receiver operating characteristic curve was 0.98 and 1.00, respectively. PSP-tau scores correlated with the PSP rating scale in patients with PSP, and AD-tau scores correlated with Mini-Mental State Examination scores in healthy control-AD continuum patients. The globus pallidus and amygdala were highlighted as regions with high weight coefficients for determining PSP- and AD-tau scores, respectively. CONCLUSIONS: These findings highlight our technology's unbiased capability to identify topologies of 3R + 4R versus 4R tau deposits. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/metabolismo , Encéfalo/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Paralisia Supranuclear Progressiva/patologia , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Aprendizado de Máquina
17.
Parkinsonism Relat Disord ; 98: 92-98, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533530

RESUMO

INTRODUCTION: Corticobasal degeneration (CBD) is the most common neuropathological substrate for clinically diagnosed corticobasal syndrome (CBS), while identifying CBD pathology in living individuals has been challenging. This study aimed to examine the capability of positron emission tomography (PET) to detect CBD-type tau depositions and neuropathological classification of CBS. METHODS: Sixteen CBS cases diagnosed by Cambridge's criteria and 12 cognitively healthy controls (HCs) underwent PET scans with 11C-PiB, 11C-PBB3, and 18F-FDG, along with T1-weighted magnetic resonance imaging. Amyloid positivity was assessed by visual inspection of 11C-PiB retentions. Tau positivity was judged by quantitative comparisons of 11C-PBB3 binding to HCs. RESULTS: Sixteen CBS cases consisted of two cases (13%) with amyloid and tau positivities indicative of Alzheimer's disease (AD) pathologies, 11 cases (69%) with amyloid negativity and tau positivity, and three cases (19%) with amyloid and tau negativities. Amyloid(-), tau(+) CBS cases showed increased retentions of 11C-PBB3 in the frontoparietal areas, basal ganglia, and midbrain, and reduced metabolism in the precentral gyrus and thalamus relative to HCs. The enhanced tau probe retentions in the frontal gray and white matters partially overlapped with metabolic deficits and atrophy and correlated with Clinical Dementia Rating scores. CONCLUSIONS: PET-based classification of CBS was in accordance with previous neuropathological reports on the prevalences of AD, non-AD tauopathies, and others in CBS. The current work suggests that 11C-PBB3-PET may assist the biological classification of CBS and understanding of links between CBD-type tau depositions and neuronal deteriorations leading to cognitive declines.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
19.
Eur J Nucl Med Mol Imaging ; 49(9): 3150-3161, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35022846

RESUMO

PURPOSE: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. METHODS: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test-retest reproducibility of 18F-T-401-PET were also evaluated. RESULTS: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test-retest reliability was also excellent with the use of MA1. CONCLUSIONS: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test-retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.


Assuntos
Canabinoides , Monoacilglicerol Lipases , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Canabinoides/metabolismo , Humanos , Masculino , Monoacilglicerol Lipases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Distribuição Tecidual
20.
Autism Res ; 14(9): 1886-1895, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185397

RESUMO

Compared to typically developing (TD) children, people with autism spectrum disorder (ASD) have an increased risk of adverse childhood experiences (ACEs). Exposure to ACEs is associated with adult ASD psychological comorbidities, such as posttraumatic stress disorder (PTSD). Occurrence of intrusive event reexperiencing, characteristic of PTSD, often causes social dysfunction in adults with ASD, but its pathological basis is unclear. This study examined brain regions related to the severity of intrusive reexperiencing and explored whether ACE severity was associated with that of intrusive reexperiencing and/or extracted regional gray matter volume. Forty-six individuals with ASD and 41 TD subjects underwent T1-weighted magnetic resonance imaging and evaluation of ACEs and intrusive reexperiencing. Brain regions related to the severity of intrusive reexperiencing in both groups were identified by voxel-based whole brain analyses. Associations among the severity of intrusive reexperiencing, that of ACEs, and gray matter volume were examined in both groups. The severities of intrusive reexperiencing and ACEs were significantly associated with reduced gray matter volume in the right precuneus in individuals with ASD but not in TD subjects. Although the right precuneus gray matter volume was smaller in individuals with ASD and severe ACEs than in those with mild ACEs or TD subjects, it was similar in the latter two groups. However, ACE-dependent gray matter volume reduction in the right precuneus led to intrusive reexperiencing in individuals with ASD. This suggests that exposure to ACEs is associated with right precuneus gray matter reduction, which is critical for intrusive reexperiencing in adults with ASD. LAY SUMMARY: Individuals with autism spectrum disorder (ASD) are at increased risk of adverse childhood experiences (ACEs) and of subsequent manifestation of intrusive reexperiencing of stressful life events. The present study found that reduced gray matter volume in the right precuneus of the brain was associated with more severe intrusive reexperiencing of ACEs by individuals with ASD. These results suggest that ACEs affect neural development in the precuneus, which is the pathological basis of intrusive event reexperiencing in ASD.


Assuntos
Experiências Adversas da Infância , Transtorno do Espectro Autista , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA