Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 99: 272-278, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034694

RESUMO

Rat is commonly used for pharmacokinetic screening during pharmaceutical lead optimization. To handle the large number of compounds, rats with a single jugular vein cannulation are commonly utilized for intravenous pharmacokinetic studies, where the same cannula is used both for dose administration and blood sampling. We demonstrate that the single cannula method is not suitable for all compounds, especially for high logP compounds. We propose an alternative dual cannulation technique in which two cannulas are placed in the same jugular vein, thus avoiding an additional surgery. Compounds were administered orally or via intravenous infusion to compare PK parameters, including bioavailability, using both procedures. For itraconazole and amiodarone, known to bind to the cannula, the measured plasma exposures were substantially higher in the single cannulated rats than those from dual cannulated rats. Area under the plasma concentration time curve differed by 79% and 74% for itraconazole and amiodarone, respectively. When compared to the single cannulation approach, clearance, volume of distribution and bioavailability determined by dual cannulation were 39%, 60% and 38% higher for itraconazole, and 46%, 34% and 42% higher for amiodarone, respectively. In contrast, all pharmacokinetic parameters were similar between single and dual-cannulated rats for the hydrophilic compound atenolol. Based on these results, we recommend the use of dual cannulated rats for intravenous pharmacokinetic studies when testing a series of hydrophobic compounds that may be prone to non-specific binding to the cannula. If single cannulated model is selected for pharmacokinetic screening, we recommend a bridging study with dual cannulated rats with representative compounds of a given chemical series.


Assuntos
Amiodarona/farmacocinética , Cateterismo/métodos , Itraconazol/farmacocinética , Veias Jugulares/metabolismo , Administração Intravenosa/métodos , Administração Oral , Animais , Disponibilidade Biológica , Coleta de Amostras Sanguíneas/métodos , Masculino , Ratos , Ratos Sprague-Dawley
2.
Drug Metab Lett ; 8(2): 109-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429513

RESUMO

The study presented here identified and utilized a panel of solubility enhancing excipients to enable the generation of flux data in the Human colon carcinoma (Caco-2) system for compounds with poor solubility. Solubility enhancing excipients Dimethyl acetamide (DMA) 1 % v/v, polyethylene glycol (PEG) 400 1% v/v, povidone 1% w/v, poloxamer 188 2.5% w/v and bovine serum albumin (BSA) 4% w/v did not compromise Caco-2 monolayer integrity as assessed by trans-epithelial resistance measurement (TEER) and Lucifer yellow (LY) permeation. Further, these excipients did not affect P-glycoprotein (P-gp) mediated bidirectional transport of digoxin, permeabilities of high (propranolol) or low permeability (atenolol) compounds, and were found to be inert to Breast cancer resistant protein (BCRP) mediated transport of cladribine. This approach was validated further using poorly soluble tool compounds, atazanavir (poloxamer 188 2.5% w/v) and cyclosporine A (BSA 4% w/v) and also applied to new chemical entity (NCE) BMS-A in BSA 4% w/v, for which Caco-2 data could not be generated using the traditional methodology due to poor solubility (<1 µM) in conventional Hanks balanced salt solution (HBSS). Poloxamer 188 2.5% w/v increased solubility of atazanavir by >8 fold whereas BSA 4% w/v increased the solubility of cyclosporine A and BMS-A by >2-4 fold thereby enabling permeability as well as efflux liability estimation in the Caco-2 model with reasonable recovery values. To conclude, addition of excipients such as poloxamer 188 2.5% w/v and BSA 4% w/v to HBSS leads to a significant improvement in the solubility of the poorly soluble compounds resulting in enhanced recoveries without modulating transporter-mediated efflux, expanding the applicability of Caco-2 assays to poorly soluble compounds.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Excipientes/farmacologia , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Isoquinolinas/metabolismo , Permeabilidade , Preparações Farmacêuticas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA