Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Plant Sci ; 14: 1155797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332696

RESUMO

Introduction: Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods: Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results: A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion: This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009248

RESUMO

Plants synthesize specific secondary metabolites for survival, reproduction, environmental resilience, and defense. Among them, lignans are a class of polyphenols with several bioactive properties: chemopreventive, anti-inflammatory, antiviral, and antioxidant. These compounds are often extracted from field-grown plants with very low yields. To overcome these constraints, in vitro tissue cultures provide a tool to optimize large-scale production. Moreover, the use of elicitation to increase secondary metabolite production is gaining importance. The aim of this work was to develop adventitious (ARL) and hairy roots (HRL) from Linum lewisi, a species able to synthesize arylnaphthalene lignans such as justicidin B. The ARL and HRL were obtained for the first time and characterized for their phenol content, antioxidant activity, and the production of justicidin B after treatments with several elicitors and precursor feeding. Through NMR spectroscopy, other four lignans were highlighted and identified in the roots extracts. A pilot-scale bioreactor was adopted to assess the suitability of the developed root cultures for future large-scale production. The ARL and HRL cultures showed a justicidin B production higher than other Linum species cultures described up to now (75.8 mg/L and 82.2 g/L), and the production more than doubled after elicitation with MeJA.

3.
Molecules ; 27(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35566080

RESUMO

Lignans are plant phenols derived from phenylpropanoids. They play a significant role in plant defense and have features that make them appealing for pharmaceutical applications. Lignans can be obtained by plant in vitro cultures; their production by adventitious and hairy roots of Linum species seems to be a promising alternative to chemical synthesis. In the context of large-scale production, it is necessary to optimize their extraction from plants tissue by choosing the more suitable solvent and extraction procedure, paying attention to the use of green media and methods. With the aim to select the best conditions for the extraction of two interesting lignans (justicidin B and 6-methoxypodophyllotoxin) from Linum tissues, different green solvents and the method of ultrasound-assisted extraction were tested. The results showed that ethyl methyl ketone and dimethyl carbonate were the best media to extract justicidin B and 6-methoxypodophyllotoxin, respectively, in terms of purity and recovery. Moreover, we showed that ultrasound-assisted extraction presents different advantages compared to conventional methods. Finally, the optimal experimental conditions to extract justicidin B from L. austriacum hairy roots using methyl ethyl ketone were also determined by the response surface method. The models obtained are reliable and accurate to estimate the purity and recovery of justicidin B.


Assuntos
Linho , Lignanas , Raízes de Plantas , Solventes
4.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500623

RESUMO

Lignans are the main secondary metabolites synthetized by Linum species as plant defense molecules. They are also valuable for human health, in particular, for their potent antiviral and antineoplastic properties. In this study, the adventitious root cultures of three Linum species (L. flavum, L. mucronatum and L. dolomiticum) were developed to produce aryltetralin lignans. The effect of two elicitors, methyl jasmonate and coronatine, on aryltetralin lignans production was also evaluated. The adventitious root cultures from L. dolomiticum were obtained and analyzed for the first time and resulted as the best producer for all the aryltetralins highlighted in this system: Podophyllotoxin, 6-methoxypodophyllotoxin and 6-methoxypodophyllotoxin-7-O-ß-glucoside, the last showing a productivity of 92.6 mg/g DW. The two elicitors differently affected the production of the 6-methoxypodophyllotoxin and 6-methoxypodophyllotoxin-7-O-ß-glucoside.


Assuntos
Linho/metabolismo , Lignanas/biossíntese , Raízes de Plantas/metabolismo , Acetatos/metabolismo , Aminoácidos/biossíntese , Ciclopentanos/metabolismo , Indenos , Oxilipinas/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/biossíntese
5.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801525

RESUMO

Lignans are the main secondary metabolites synthetized by Linum species as plant defense compounds but they are also valuable for human health, in particular, for novel therapeutics. In this work, Linum austriacum in vitro cultures, cells (Cc), adventitious roots (ARc) and hairy roots (HRc) were developed for the production of justicidin B through elicitation with methyl jasmonate (MeJA) and coronatine (COR). The performances of the cultures were evaluated for their stability, total phenols content and antioxidant ability. NMR was used to identify justicidin B and isojusticidin B and HPLC to quantify the production, highlighting ARc and HRc as the highest productive tissues. MeJA and COR treatments induced the synthesis of justicidin B more than three times and the synthesis of other compounds. RNA-sequencing and a de novo assembly of L. austriacum ARc transcriptome was generated to identify the genes activated by MeJA. Furthermore, for the first time, the intracellular localization of justicidin B in ARc was investigated through microscopic analysis. Then, HRc was chosen for small-scale production in a bioreactor. Altogether, our results improve knowledge on justicidin B pathway and cellular localization in L. austriacum for future scale-up processes.


Assuntos
Dioxolanos/análise , Linho/metabolismo , Regulação da Expressão Gênica de Plantas , Lignanas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma , Dioxolanos/isolamento & purificação , Dioxolanos/metabolismo , Linho/genética , Linho/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Lignanas/isolamento & purificação , Lignanas/metabolismo , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
6.
Molecules ; 24(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717508

RESUMO

Cannabis sativa L. is one of the most-studied species for its phytochemistry due to the abundance of secondary metabolites, including cannabinoids, terpenes and phenolic compounds. In the last decade, fiber-type hemp varieties have received interest for the production of many specialized secondary metabolites derived from the phenylpropanoid pathway. The interest in these molecules is due to their antioxidant activity. Since secondary metabolite synthesis occurs at a very low level in plants, the aim of this study was to develop a strategy to increase the production of such compounds and to elucidate the biochemical pathways involved. Therefore, cell suspensions of industrial hemp (C. sativa L. var. Futura) were produced, and an advantageous elicitation strategy (methyl jasmonate, MeJA) in combination with precursor feeding (tyrosine, Tyr) was developed. The activity and expression of phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT) increased upon treatment. Through 1H-NMR analyses, some aromatic compounds were identified, including, for the first time, 4-hydroxyphenylpyruvate (4-HPP) in addition to tyrosol. The 4-day MeJA+Tyr elicited samples showed a 51% increase in the in vitro assay (2,2-diphenyl-1-picrylhydrazyl, DPPH) radical scavenging activity relative to the control and a 80% increase in the cellular antioxidant activity estimated on an ex vivo model of human erythrocytes. Our results outline the active metabolic pathways and the antioxidant properties of hemp cell extracts under the effect of specific elicitors.


Assuntos
Antioxidantes/farmacologia , Cannabis/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Canabinoides/metabolismo , Canabinoides/farmacologia , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Humanos , Fenóis/metabolismo , Fenóis/farmacologia , Fenilalanina Amônia-Liase/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terpenos/metabolismo , Terpenos/farmacologia
7.
Nat Prod Res ; 31(23): 2705-2711, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28278651

RESUMO

The effects of Perilla frutescens pollination on the content of seed antioxidants were analysed by agronomical and pollination trials, comparing seeds produced from bagged plants in 2013 (A) to prevent access to pollinating insects, and seeds from open-pollinated plants in 2013 (B) and 2015 (C). The seeds of open-pollinated plants were significantly more numerous and heavier than those of self-pollinated plants. 1H NMR seed analysis showed a higher presence of phenolic compounds in open-pollinated seeds, mainly rosmarinic acid and flavonoids, apigenin and luteolin. Flavonoids were present in the glucosylated form in seeds (A) and (C), and in the aglycone form in seeds from (B) plants. Saturated and unsaturated fatty acids (palmitic, linoleic and linolenic) were more abundant in seeds from self-pollinated flowers. Pollination performed almost exclusively by the honeybee notably increased the antioxidant content in perilla seeds and gave rise to a reduction in the fatty acid content.


Assuntos
Antioxidantes/química , Perilla frutescens/química , Perilla frutescens/fisiologia , Polinização , Sementes/química , Animais , Antioxidantes/análise , Apigenina/análise , Abelhas , Cinamatos/análise , Depsídeos/análise , Luteolina/análise , Espectroscopia de Ressonância Magnética , Ácido Rosmarínico
8.
Rice (N Y) ; 9(1): 25, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27216147

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. To identify genes and pathways involved in the tolerant response to dehydration, a powerful approach consists in the genome-wide analysis of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes. RESULTS: The physiological response to osmotic stress of 17 japonica rice genotypes was evaluated. A clear differentiation of the most tolerant and the most sensitive phenotypes was evident, especially after 24 and 48 h of treatment. Two genotypes, which were characterized by a contrasting response (tolerance/sensitivity) to the imposed stress, were selected. A parallel transcriptomic analysis was performed on roots and leaves of these two genotypes at 3 and 24 h of stress treatment. RNA-Sequencing data showed that the tolerant genotype Eurosis and the sensitive genotype Loto mainly differed in the early response to osmotic stress in roots. In particular, the tolerant genotype was characterized by a prompt regulation of genes related to chromatin, cytoskeleton and transmembrane transporters. Moreover, a differential expression of transcription factor-encoding genes, genes involved in hormone-mediate signalling and genes involved in the biosynthesis of lignin was observed between the two genotypes. CONCLUSIONS: Our results provide a transcriptomic characterization of the osmotic stress response in rice and identify several genes that may be important players in the tolerant response.

9.
Plant Physiol Biochem ; 84: 142-148, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280223

RESUMO

Globulins are the predominant class of seed storage proteins in a wide variety of plants. In many plant species globulins are present in several isoforms encoded by gene families. The major seed storage protein of Cannabis sativa L. is the globulin edestin, widely known for its nutritional potential. In this work, we report the isolation of seven cDNAs encoding for edestin from the C. sativa variety Carmagnola. Southern blot hybridization is in agreement with the number of identified edestin genes. All seven sequences showed the characteristic globulin features, but they result to be divergent members/forms of two edestin types. According to their sequence similarity four forms named CsEde1A, CsEde1B, CsEde1C, CsEde1D have been assigned to the edestin type 1 and the three forms CsEde2A, CsEde2B, CsEde2C to the edestin type 2. Analysis of the coding sequences revealed a high percentage of similarity (98-99%) among the different forms belonging to the same type, which decreased significantly to approximately 64% between the forms belonging to different types. Quantitative RT-PCR analysis revealed that both edestin types are expressed in developing hemp seeds and the amount of CsEde1 was 4.44 ± 0.10 higher than CsEde2. Both edestin types exhibited a high percentage of arginine (11-12%), but CsEde2 resulted particularly rich in methionine residues (2.36%) respect to CsEde1 (0.82%). The amino acid composition determined in CsEde1 and CsEde2 types suggests that these seed proteins can be used to improve the nutritional quality of plant food-stuffs.


Assuntos
Cannabis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Cannabis/genética , Globulinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética
10.
Int J Mol Sci ; 14(7): 13626-44, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23812081

RESUMO

Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.


Assuntos
Cannabis , Flavonoides , Genes de Plantas/fisiologia , Filogenia , Proteínas de Plantas , Sequência de Bases , Cannabis/enzimologia , Cannabis/genética , Flavonoides/biossíntese , Flavonoides/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Humanos , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética
11.
Plant Physiol Biochem ; 70: 492-503, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23860229

RESUMO

One of the major objectives of rice (Oryza sativa L.) breeding programs is the development of new varieties with higher tolerance/resistance to both abiotic and biotic stresses. In this study, Italian rice cultivars were subjected to osmotic stress or benzothiadiazole (BTH) treatments. An analysis of the expression of selected genes known to be involved in the stress response and (1)H nuclear magnetic resonance ((1)H NMR) metabolic profiling were combined with multivariate statistical analyses to elucidate potential correlations between gene expression or metabolite content and observed tolerant/resistant phenotypes. We observed that the expression of three chosen genes (two WRKY genes and one peroxidase encoding gene) differed between susceptible and resistant cultivars in response to BTH treatments. Moreover, the analysis of metabolite content, in particular in the osmotic stress experiment, enabled discrimination between selected cultivars based on differences in the accumulation of some primary metabolites, primarily sugars. This research highlights the potential usefulness of this approach to characterise rice varieties based on transcriptional or metabolic changes due to adverse environmental conditions.


Assuntos
Metabolismo dos Carboidratos/genética , Genes de Plantas , Oryza/metabolismo , Osmose , Estresse Fisiológico/genética , Tiadiazóis/farmacologia , Transcrição Gênica , Adaptação Fisiológica/genética , Cruzamento , Oryza/efeitos dos fármacos , Oryza/genética , Peroxidase/genética , Peroxidase/metabolismo , Fenótipo , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
12.
Plant Physiol Biochem ; 48(9): 764-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20619667

RESUMO

The constitutive expression of the rice Osmyb4 gene in Arabidopsis plants gives rise to enhanced abiotic and biotic stress tolerance, probably by activating several stress-inducible pathways. However, the effect of Osmyb4 on stress tolerance likely depends on the genetic background of the transformed species. In this study, we explored the potential of Osmyb4 to enhance the cold and freezing tolerance of Osteospermum ecklonis, an ornamental and perennial plant native to South Africa, because of an increasing interest in growing this species in Europe where winter temperatures are low. Transgenic O. ecklonis plants were obtained through transformation with the Osmyb4 rice gene under the control of the CaMV35S promoter. We examined the phenotypic adaptation of transgenic plants to cold and freezing stress. We also analysed the ability of wild-type and transgenic Osteospermum to accumulate several solutes, such as proline, amino acids and sugars. Using nuclear magnetic resonance, we outlined the metabolic profile of this species under normal growth conditions and under stress for the first time. Indeed, we found that overexpression of Osmyb4 improved the cold and freezing tolerance and produced changes in metabolite accumulation, especially of sugars and proline. Based on our data, it could be of agronomic and economic interest to use this gene to produce Osteospermum plants capable of growing in open field, even during the winter season in climatic zone Z9.


Assuntos
Asteraceae/metabolismo , Temperatura Baixa , Congelamento , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Asteraceae/genética , Asteraceae/crescimento & desenvolvimento , Carboidratos/análise , Europa (Continente) , Espectroscopia de Ressonância Magnética , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Análise de Componente Principal , Prolina/metabolismo , África do Sul , Estresse Fisiológico
13.
Plant Cell Rep ; 27(10): 1677-86, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18679687

RESUMO

Constitutive expression of the rice cold-inducible Osmyb4 gene in transgenic Arabidopsis (Arabidopsis thaliana) plants improves adaptive responses to cold and drought stress, most likely due to the constitutive activation of several stress-inducible pathways and to the accumulation of several compatible solutes (e.g., glucose, fructose, sucrose, proline, glycine betaine and some aromatic compounds). Although the Osmyb4 gene seems able to activate stress responsive pathways in different species, we previously reported that its specific effect on stress tolerance depends on the transformed species. In the present work, we report the effects of the Osmyb4 expression for improving the stress response in apple (Malus pumila Mill.) plants. Namely, we found that the ectopic expression of the Myb4 transcription factor improved physiological and biochemical adaptation to cold and drought stress and modified metabolite accumulation. Based on these results it may be of interest to use Osmyb4 as a tool for improving the productivity of woody perennials under environmental stress conditions.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Secas , Malus/genética , Malus/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Carboidratos , Respiração Celular , Regulação da Expressão Gênica de Plantas , Malus/anatomia & histologia , Oryza/genética , Fenótipo , Folhas de Planta/citologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solo , Água/fisiologia
14.
Physiol Plant ; 131(1): 106-21, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18251929

RESUMO

Mybleu is a natural incomplete transcription factor of rice (Oryza sativa), consisting of a partial Myb repeat followed by a short leucine zipper. We previously showed its localization to the apical region of rice roots and coleoptiles. Specifically, in coleoptiles, Mybleu is expressed under both aerobic and anaerobic conditions, whereas in roots, it is expressed only under aerobic conditions. Mybleu is able to dimerize with canonical leucine zippers and to activate transcription selectively. To investigate Mybleu function in vivo, we transformed Arabidopsis thaliana and evaluated several morphological, physiological and biochemical parameters. In agreement with a hypothesized role of Mybleu in cell elongation in the differentiation zone, we found that the constitutive expression of this transcription factor in Arabidopsis induced elongation in the primary roots and in the internodal region of the floral stem; we also observed a modification of the root apex morphology in transformed lines. Based on the high expression of Mybleu in anaerobic rice coleoptiles, we studied the role of this transcription factor in transgenic plants grown under low-oxygen conditions. We found that overexpression of this transcription factor increased tolerance to oxygen deficit. In transgenic plants, this effect may depend both on the maintenance of a higher metabolism during stress and on the higher expression levels of certain genes involved in the anaerobic response.


Assuntos
Arabidopsis/genética , Oryza/genética , Oxigênio/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeído Desidrogenase/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/genética , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Germinação/genética , Germinação/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo , Sementes/fisiologia , Fatores de Transcrição/fisiologia
15.
Plant J ; 37(1): 115-27, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14675437

RESUMO

The expression of the gene Osmyb4, detected at low level in rice (Oryza sativa) coleoptiles grown for 3 days at 29 degrees C, is strongly induced by treatments at 4 degrees C. At sublethal temperatures of 10 and 15 degrees C, its expression in rice seedlings is already evident, but this effect cannot be vicariated by other stresses or ABA treatment. We demonstrate by transient expression that Myb4 transactivates the PAL2, ScD9 SAD and COR15a cold-inducible promoters. The Osmyb4 function in vivo is demonstrated overexpressing its cDNA in Arabidopsis thaliana plants (ecotype Wassilewskija) under the control of the constitutive CaMV 35S promoter. Myb4 overexpressing plants show a significant increased cold and freezing tolerance, measured as membrane or Photosystem II (PSII) stability and as whole plant tolerance. Finally, in Osmyb4 transgenic plants, the expression of genes participating in different cold-induced pathways is affected, suggesting that Myb4 represents a master switch in cold tolerance.


Assuntos
Aclimatação/fisiologia , Arabidopsis/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Aclimatação/genética , Arabidopsis/genética , Sequência de Bases , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA