Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J R Soc Interface ; 13(114): 20151001, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26740576

RESUMO

Producing sufficient, healthy food for a growing world population amid a changing climate is a major challenge for the twenty-first century. Agricultural trade could help alleviate this challenge by using comparative productivity advantages between countries. However, agricultural trade has implications for national food security and could displace environmental impacts from developed to developing countries. This study illustrates the global effects resulting from the agricultural trade of a single country, by analysing the global cropland and greenhouse gas impacts of the UK's food and feed supply. The global cropland footprint associated with the UK food and feed supply increased by 2022 kha (+23%) from 1986 to 2009. Greenhouse gas emissions (GHGE) associated with fertilizer and manure application, and rice cultivation remained relatively constant at 7.9 Mt CO2e between 1987 and 2008. Including GHGE from land-use change, however, leads to an increase from 19.1 in 1987 to 21.9 Mt CO2e in 2008. The UK is currently importing over 50% of its food and feed, whereas 70% and 64% of the associated cropland and GHGE impacts, respectively, are located abroad. These results imply that the UK is increasingly reliant on external resources and that the environmental impact of its food supply is increasingly displaced overseas.


Assuntos
Produtos Agrícolas/economia , Abastecimento de Alimentos/economia , Efeito Estufa/economia , Modelos Econômicos , Produtos Agrícolas/crescimento & desenvolvimento , Reino Unido
2.
Proc Natl Acad Sci U S A ; 112(32): 9956-60, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26217000

RESUMO

Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion--the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.


Assuntos
Carbono/análise , Produtos Agrícolas/química , Ecossistema , Florestas , Compostos Orgânicos/análise , Solo/química , Clima Tropical , Biomassa , Geografia , Nitrogênio/análise , Estatísticas não Paramétricas , Árvores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA