RESUMO
Objectives: The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates rapid methods for assessing monoclonal antibody (mAb) potency against emerging variants. Authentic virus neutralisation assays are considered the gold standard for measuring virus-neutralising antibody (nAb) titres in serum. However, authentic virus-based assays pose inherent practical challenges for measuring nAb titres against emerging SARS-CoV-2 variants (e.g. storing infectious viruses and testing at biosafety level-3 facilities). Here, we demonstrate the utility of pseudovirus neutralisation assay data in conjunction with serum mAb concentrations to robustly predict nAb titres in serum. Methods: SARS-CoV-2 nAb titres were determined via authentic- and lentiviral pseudovirus-based neutralisation assays using serological data from three AZD7442 (tixagevimab-cilgavimab) studies: PROVENT (NCT04625725), TACKLE (NCT04723394) and a phase 1 dose-ranging study (NCT04507256). AZD7442 serum concentrations were assessed using immunocapture. Serum-based half-maximal inhibitory concentration (IC50) values were derived from pseudovirus nAb titres and serum mAb concentrations, and compared with in vitro IC50 measurements. Results: nAb titres measured via authentic- and lentiviral pseudovirus-based neutralisation assays were strongly correlated for the ancestral SARS-CoV-2 virus and SARS-CoV-2 Alpha. Serum AZD7442 concentrations and pseudovirus nAb titres were strongly correlated for multiple SARS-CoV-2 variants with all Spearman correlation coefficients ≥ 0.78. Serum-based IC50 values were similar to in vitro IC50 values for AZD7442, for ancestral SARS-CoV-2 and Alpha, Delta, Omicron BA.2 and Omicron BA.4/5 variants. Conclusions: These data highlight that serum mAb concentrations and pseudovirus in vitro IC50 values can be used to rapidly predict nAb titres in serum for emerging and historical SARS-CoV-2 variants.
RESUMO
BACKGROUND: AZD2816 is a variant-adapted COVID-19 vaccine that expresses the full-length SARS-CoV-2 beta variant spike protein but is otherwise similar to AZD1222 (ChAdOx1 nCoV-19). This study aimed to evaluate the safety and immunogenicity of AZD1222 or AZD2816 (or both) primary-series vaccination in a cohort of adult participants who were previously unvaccinated. METHODS: In this phase 2/3, randomised, multinational, active-controlled, non-inferiority, immunobridging study, adult participants previously unvaccinated for COVID-19 were enrolled at 16 study sites in Brazil, South Africa, Poland, and the UK. Participants were stratified by age, sex, and comorbidity and randomly assigned 5:5:5:2 to receive a primary series of AZD1222 (AZD1222 group), AZD2816 (AZD2816 [4-week] group), or AZD1222-AZD2816 (AZD1222-AZD2816 group) at 4-week dosing intervals, or AZD2816 at a 12-week interval (AZD2816 [12-week] group) and evaluated for safety and immunogenicity through 180 days after dose 2. Primary outcomes were safety (rates of solicited adverse events occurring during 7 days and unsolicited adverse events occurring during 28 days after each dose) and immunogenicity (non-inferiority of pseudovirus neutralising antibody geometric mean titre [GMT], GMT ratio margin of 0·67, and seroresponse rate, rate difference margin of -10%, recorded 28 days after dose 2 with AZD2816 [4-week interval] against beta vs AZD1222 against ancestral SARS-CoV-2) in participants who were seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04973449, and is completed. FINDINGS: Between July 7 and Nov 12, 2021, 1449 participants were assigned to the AZD1222 group (n=413), the AZD2816 (4-week) group (n=415), the AZD1222-AZD2816 group (n=412), and the AZD2816 (12-week) group (n=209). Ten (2·6%) of 378 participants who were seronegative at baseline in the AZD1222 group, nine (2·4%) of 379 in the AZD2816 (4-week) group, eight (2·1%) of 380 in the AZD1222-AZD2816 group, and 11 (5·8%) of 191 in the AZD2816 (12-week) group had vaccine-related unsolicited adverse events. Serious adverse events were recorded in one (0·3%) participant in the AZD1222 group, one (0·3%) in the AZD2816 (4-week) group, two (0·5%) in the AZD1222-AZD2816 group, and none in the AZD2816 (12-week) group. Co-primary immunogenicity endpoints were met: neutralising antibody GMT (ratio 1·19 [95% CI 1·08-1·32]; lower bound greater than 0·67) and seroresponse rate (difference 1·7% [-3·1 to 6·5]; lower bound greater than -10%) at 28 days after dose 2 were non-inferior in the AZD2816 (4-week) group against beta versus in the AZD1222 group against ancestral SARS-CoV-2. Seroresponse rates were highest with AZD2816 against beta (12-week interval 94·3% [95% CI 89·4-97·3]; 4-week interval 85·7% [81·5-89·2]) and with AZD1222 (84·6% [80·3-88·2]) against ancestral SARS-CoV-2. INTERPRETATION: Primary series of AZD1222 and AZD2816 were well tolerated, with no emergent safety concerns. Both vaccines elicited robust immunogenicity against beta and ancestral SARS-CoV-2 with greater responses demonstrated when testing against SARS-CoV-2 strains that matched those targeted by the respective vaccine. These findings demonstrate the continued importance of ancestral COVID-19 vaccines in protecting against severe COVID-19 and highlight the feasibility of using the ChAdOx1 platform to develop COVID-19 vaccines against future SARS-CoV-2 variants. FUNDING: AstraZeneca.
Assuntos
Vacinas contra COVID-19 , COVID-19 , ChAdOx1 nCoV-19 , Imunogenicidade da Vacina , SARS-CoV-2 , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Método Duplo-Cego , COVID-19/prevenção & controle , COVID-19/imunologia , Reino Unido , SARS-CoV-2/imunologia , Brasil , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , África do Sul , Polônia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Idoso , Vacinação/métodos , Adulto JovemRESUMO
BACKGROUND: This study aimed to evaluate AZD2816, a variant-updated COVID-19 vaccine expressing the full-length SARS-CoV-2 beta (B.1.351) variant spike protein that is otherwise similar to AZD1222 (ChAdOx1 nCoV-19), and AZD1222 as third-dose boosters. METHODS: This phase 2/3, partly double-blinded, randomised, active-controlled study was done at 19 sites in the UK and four in Poland. Adult participants who had received a two-dose AZD1222 or mRNA vaccine primary series were randomly assigned by means of an Interactive Response Technology-Randomisation and Trial Supply Management system (1:1 within each primary-series cohort, stratified by age, sex, and comorbidities) to receive AZD1222 or AZD2816 (intramuscular injection; 5â×â1010 viral particles). Participants, investigators, and all sponsor staff members involved in study conduct were masked to randomisation. AZD1222 and AZD2816 doses were prepared by unmasked study staff members. The primary objectives were to evaluate safety and humoral immunogenicity (non-inferiority of day-29 pseudovirus neutralising antibody geometric mean titre [GMT] against ancestral SARS-CoV-2: AZD1222 booster vs AZD1222 primary series [historical controls]; margin 0·67; SARS-CoV-2-seronegative participants). This study is registered with ClinicalTrials.gov, NCT04973449, and is completed. FINDINGS: Between June 27 and Sept 30, 2021, 1394 participants of the 1741 screened were randomly assigned to AZD1222 or AZD2816 following an AZD1222 (n=373, n=377) or mRNA vaccine (n=322, n=322) primary series. In SARS-CoV-2-seronegative participants receiving AZD1222 or AZD2816, 78% and 80% (AZD1222 primary series) and 90% and 93%, respectively (mRNA vaccine primary series) reported solicited adverse events to the end of day 8; 2%, 2%, 1%, and 1% had serious adverse events and 12%, 12%, 10%, and 11% had adverse events of special interest, respectively, to the end of day 180. The primary immunogenicity non-inferiority endpoint was met: day-29 neutralising antibody GMT ratios (ancestral SARS-CoV-2) were 1·02 (95% CI 0·90-1·14) and 3·47 (3·09-3·89) with AZD1222 booster versus historical controls (AZD1222 and mRNA vaccine primary series, respectively). Responses against beta were greater with AZD2816 versus AZD1222 (GMT ratios, AZD1222, mRNA vaccine primary series 1·84 [1·63-2·08], 2·22 [1·99-2·47]). INTERPRETATION: Both boosters were well tolerated, with immunogenicity against ancestral SARS-CoV-2 similar to AZD1222 primary-series vaccination. AZD2816 gave greater immune responses against beta versus AZD1222. FUNDING: AstraZeneca.
Assuntos
COVID-19 , ChAdOx1 nCoV-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Polônia , COVID-19/prevenção & controle , Anticorpos Neutralizantes , RNA Mensageiro , Reino UnidoRESUMO
Threats from climate change and other human pressures have led to widespread concern for the future of Australia's Great Barrier Reef (GBR). Resilience of GBR reefs will be determined by their ability to resist disturbances and to recover from coral loss, generating intense interest in management actions that can moderate these processes. Here we quantify the effect of environmental and human drivers on the resilience of southern and central GBR reefs over the past two decades. Using a composite water quality index, we find that while reefs exposed to poor water quality are more resistant to coral bleaching, they recover from disturbance more slowly and are more susceptible to outbreaks of crown-of-thorns starfish and coral disease-with a net negative impact on recovery and long-term hard coral cover. Given these conditions, we find that 6-17% improvement in water quality will be necessary to bring recovery rates in line with projected increases in coral bleaching among contemporary inshore and mid-shelf reefs. However, such reductions are unlikely to buffer projected bleaching effects among outer-shelf GBR reefs dominated by fast-growing, thermally sensitive corals, demonstrating practical limits to local management of the GBR against the effects of global warming.
Assuntos
Recifes de Corais , Qualidade da Água , Austrália , Mudança ClimáticaRESUMO
Vaccine policy, decision processes and outcomes vary widely across Europe. The objective was to map these factors across 16 European countries by assessing (A) national vaccination strategy and implementation, (B) attributes of healthcare vaccination systems, and (C) outcomes of universal mass vaccination (UMV) as a measure of how successful the vaccination policy is. A. Eleven countries use standardised assessment frameworks to inform vaccine recommendations. Only Sweden horizon scans new technologies, uses standard assessments, systematic literature and health economic reviews, and publishes its decision rationale. Time from European marketing authorisation to UMV implementation varies despite these standard frameworks. Paediatric UMV recommendations (generally government-funded) are relatively comparable, however only influenza vaccine is widely recommended for adults. B. Fourteen countries aim to report annually on national vaccine coverage rates (VCRs), as well as have target VCRs per vaccine across different age groups. Ten countries use either electronic immunisation records or a centralised registry for childhood vaccinations, and seven for other age group vaccinations. C. National VCRs for infant (primary diphtheria tetanus pertussis (DTP)), adolescent (human papillomavirus (HPV)) and older adult (seasonal influenza) UMV programmes found ranges of: 89.1% to 98.2% for DTP-containing vaccines, 5% to 85.9% for HPV vaccination, and 4.3% to 71.6% for influenza vaccine. Regarding reported disease incidence, a wide range was found across countries for measles, mumps and rubella (in children), and hepatitis B and invasive pneumococcal disease (in all ages). These findings reflect an individual approach to vaccination by country. High VCRs can be achieved, particularly for paediatric vaccinations, despite different approaches, targets and reporting systems; these are not replicated in vaccines for other age groups in the same country. Additional measures to improve VCRs across all age groups are needed and could benefit from greater harmonisation in target setting, vaccination data collection and sharing across EU countries.
Assuntos
Programas de Imunização/organização & administração , Vacinação/estatística & dados numéricos , Europa (Continente) , HumanosRESUMO
PEGylation of protein side chains has been used for more than 30 years to enhance the pharmacokinetic properties of protein drugs. However, there are no structure- or sequence-based guidelines for selecting sites that provide optimal PEG-based pharmacokinetic enhancement with minimal losses to biological activity. We hypothesize that globally optimal PEGylation sites are characterized by the ability of the PEG oligomer to increase protein conformational stability; however, the current understanding of how PEG influences the conformational stability of proteins is incomplete. Here we use the WW domain of the human protein Pin 1 (WW) as a model system to probe the impact of PEG on protein conformational stability. Using a combination of experimental and theoretical approaches, we develop a structure-based method for predicting which sites within WW are most likely to experience PEG-based stabilization, and we show that this method correctly predicts the location of a stabilizing PEGylation site within the chicken Src SH3 domain. PEG-based stabilization in WW is associated with enhanced resistance to proteolysis, is entropic in origin, and likely involves disruption by PEG of the network of hydrogen-bound solvent molecules that surround the protein. Our results highlight the possibility of using modern site-specific PEGylation techniques to install PEG oligomers at predetermined locations where PEG will provide optimal increases in conformational and proteolytic stability.
Assuntos
Polietilenoglicóis/química , Estabilidade Proteica , Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Conformação Proteica , TermodinâmicaRESUMO
PEGylation, or addition of poly(ethylene glycol) chains to proteins, is widely used to improve delivery in pharmaceutical applications. Recent studies suggest that stabilization of a protein by PEG, and hence its proteolytic degradability, is sequence-dependent and requires only short PEG chains. Here we connect stabilization by short PEG chains directly to the structural dynamics of the protein and PEG chain. We measured the stability of human Pin1 WW domain with PEG-4 at asparagine 19 for a full mutant cycle at two positions thought to influence PEG-protein interaction: Ser16Ala and Tyr23Phe. We then performed explicit solvent molecular dynamics simulations on all PEGylated and PEG-free mutants. The mutant cycle yields a nonadditive stabilization effect where the pseudo-wild type and double mutant are more stabilized relative to unPEGylated proteins than are the two single mutants. The simulation reveals why: the double mutant suffers loss of ß-sheet structure, which PEGylation restores even though the PEG extends as a coil into the solvent. In contrast, in one of the single mutants, PEG preferentially interacts with the protein surface while disrupting the interactions of its asparagine host with a nearby methionine side chain. Thus, PEG attachment can stabilize a protein differentially depending on the local sequence, and either by interacting with the surface or by extending into the solvent. A simulation with PEG-45 attached to asparagine 19 shows that PEG even can do both in the same context.
Assuntos
Polietilenoglicóis/química , Proteínas/química , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Estabilidade Proteica , Proteínas/genéticaRESUMO
Protein PEGylation is an effective method for reducing the proteolytic susceptibility, aggregation propensity, and immunogenicity of protein drugs. These pharmacokinetic challenges are fundamentally related to protein conformational stability, and become much worse for proteins that populate the unfolded state under ambient conditions. If PEGylation consistently led to increased conformational stability, its beneficial pharmacokinetic effects could be extended and enhanced. However, the impact of PEGylation on protein conformational stability is currently unpredictable. Here we show that appending a short PEG oligomer to a single Asn side chain within a reverse turn in the WW domain of the human protein Pin 1 increases WW conformational stability in a manner that depends strongly on the length of the PEG oligomer: shorter oligomers increase folding rate, whereas longer oligomers increase folding rate and reduce unfolding rate. This strong length dependence is consistent with the possibility that the PEG oligomer stabilizes the transition and folded states of WW relative to the unfolded state by interacting favorably with side-chain or backbone groups on the WW surface.
Assuntos
Peptidilprolil Isomerase/química , Polietilenoglicóis/química , Dobramento de Proteína , Humanos , Modelos Moleculares , Peptidilprolil Isomerase de Interação com NIMA , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de ProteínaRESUMO
The scope of enantioselective allylations employing Nakamura's allylzinc-bisoxazoline reagent was examined by performing allylations of a selection of readily available ketones. Low-to-moderate ee's were observed, and a computational study was conducted to rationalize the results. Examination of transition structures of previously performed allylations that proceeded with high ee revealed the importance of both local and global control elements in these successful reactions. The ability of density functional theory methods to estimate the enantioselectivity of these asymmetric ketone allylations was established. All allylations that were studied computationally exhibited low (<5 kcal/mol) activation barriers, a result that is consistent with the highly reactive nature of Nakamura's reagent.