Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Res ; 471: 115112, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871129

RESUMO

BACKGROUND: Medial temporal lobe atrophy has been linked to decline in neuropsychological measures of explicit memory function. While the hippocampus has long been identified as a critical structure in learning and memory processes, less is known about contributions of the amygdala to these functions. We sought to investigate the relationship between amygdala volume and memory functioning in a clinical sample of older adults with and without cognitive impairment. METHODS: A serial clinical sample of older adults that underwent neuropsychological assessment at an outpatient neurology clinic was selected for retrospective chart review. Patients were included in the study if they completed a comprehensive neuropsychological assessment within six months of a structural magnetic resonance imaging scan. Regional brain volumes were quantified using Neuroreader® software. Associations between bilateral hippocampal and amygdala volumes and memory scores, derived from immediate and delayed recall conditions of a verbal story learning task and a visual design reconstruction task, were examined using mixed-effects general linear models, controlling for total intracranial volume, scanner model, age, sex and education. Partial correlation coefficients, adjusted for these covariates, were calculated to estimate the strength of the association between volumes and memory scores. RESULTS: A total of 68 (39 F, 29 M) participants were included in the analyses, with a mean (SD) adjusted age of 80.1 (6.0) and educational level of 15.9 (2.5) years. Controlling for age, sex, education, and total intracranial volume, greater amygdala volumes were associated with better verbal and visual memory performance, with effect sizes comparable to hippocampal volume. No significant lateralized effects were observed. Partial correlation coefficients ranged from 0.47 to 0.33 (p<.001). CONCLUSION: These findings contribute to a growing body of knowledge identifying the amygdala as a target for further research in memory functioning. This highlights the importance of considering the broader functioning of the limbic system in which multiple subcortical structures contribute to memory processes and decline in older adults.

2.
J Alzheimers Dis ; 90(4): 1761-1769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36373320

RESUMO

BACKGROUND: Distinguishing between subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia in a scalable, accessible way is important to promote earlier detection and intervention. OBJECTIVE: We investigated diagnostic categorization using an FDA-cleared quantitative electroencephalographic/event-related potential (qEEG/ERP)-based cognitive testing system (eVox® by Evoke Neuroscience) combined with an automated volumetric magnetic resonance imaging (vMRI) tool (Neuroreader® by Brainreader). METHODS: Patients who self-presented with memory complaints were assigned to a diagnostic category by dementia specialists based on clinical history, neurologic exam, neuropsychological testing, and laboratory results. In addition, qEEG/ERP (n = 161) and quantitative vMRI (n = 111) data were obtained. A multinomial logistic regression model was used to determine significant predictors of cognitive diagnostic category (SCD, MCI, or dementia) using all available qEEG/ERP features and MRI volumes as the independent variables and controlling for demographic variables. Area under the Receiver Operating Characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the prediction models. RESULTS: The qEEG/ERP measures of Reaction Time, Commission Errors, and P300b Amplitude were significant predictors (AUC = 0.79) of cognitive category. Diagnostic accuracy increased when volumetric MRI measures, specifically left temporal lobe volume, were added to the model (AUC = 0.87). CONCLUSION: This study demonstrates the potential of a primarily physiological diagnostic model for differentiating SCD, MCI, and dementia using qEEG/ERP-based cognitive testing, especially when combined with volumetric brain MRI. The accessibility of qEEG/ERP and vMRI means that these tools can be used as adjuncts to clinical assessments to help increase the diagnostic certainty of SCD, MCI, and dementia.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Potenciais Evocados , Demência/diagnóstico por imagem , Demência/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA