Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 144: 211-229, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28841465

RESUMO

This work shows that the active interaction between human umbilical cord matrix stem cells and Poly (l-lactide)acid (PLLA) and PLLA/Multi Walled Carbon Nanotubes (MWCNTs) nanocomposite films results in the stem cell assembly as a spheroid conformation and affects the stem cell fate transition. We demonstrated that spheroids directly respond to a tunable surface and the bulk properties (electric, dielectric and thermal) of plain and nanocomposite PLLA films by triggering a mechanotransduction axis. This stepwise process starts from tethering of the cells' focal adhesion proteins to the surface, together with the adherens junctions between cells. Both complexes transmit traction forces to F-Actin stress fibres that link Filamin-A and Myosin-IIA proteins, generating a biological scaffold, with increased stiffening conformation from PLLA to PLLA/MWCNTs, and enable the nucleoskeleton proteins to boost chromatin reprogramming processes. Herein, the opposite expression of NANOG and GATA6 transcription factors, together with other lineage specification related proteins, steer spheroids toward an Epiblast-like or Primitive Endoderm-like lineage commitment, depending on the absence or presence of 1 wt% MWCNTs, respectively. This work represents a pioneering effort to create a stem cell/material interface that can model the stem cell fate transition under growth culture conditions.


Assuntos
Células-Tronco Adultas/citologia , Materiais Biocompatíveis/química , Endoderma/citologia , Camadas Germinativas/citologia , Nanocompostos/química , Poliésteres/química , Engenharia Tecidual/métodos , Adulto , Células-Tronco Adultas/metabolismo , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular/métodos , Endoderma/metabolismo , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Camadas Germinativas/metabolismo , Humanos , Mecanotransdução Celular , Nanotubos de Carbono/química
2.
Materials (Basel) ; 9(1)2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28787836

RESUMO

The purpose of this study was to investigate the antimicrobial properties of multifunctional nanocomposites based on poly(dl-Lactide-co-Glycolide) (PLGA) and increasing concentration of silver (Ag) nanoparticles and their effects on cell viability for biomedical applications. PLGA nanocomposite films, produced by solvent casting with 1 wt%, 3 wt% and 7 wt% of Ag nanoparticles were investigated and surface properties were characterized by atomic force microscopy and contact angle measurements. Antibacterial tests were performed using an Escherichia coli RB and Staphylococcus aureus 8325-4 strains. The cell viability and morphology were performed with a murine fibroblast cell line (L929) and a human osteosarcoma cell line (SAOS-2) by cell viability assay and electron microscopy observations. Matrix protein secretion and deposition were also quantified by enzyme-linked immunosorbent assay (ELISA). The results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles, which induce the onset of porous round-like microstructures and also affect the wettability. The PLGA/Ag films having silver nanoparticles of more than 3 wt% showed antibacterial effects against E. coli and S. aureus. Furthermore, silver-containing PLGA films displayed also a good cytocompatibility when assayed with L929 and SAOS-2 cells; indicating the PLGA/3Ag nanocomposite film as a promising candidate for tissue engineering applications.

3.
ScientificWorldJournal ; 2014: 410423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25025086

RESUMO

Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.


Assuntos
Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Nanocompostos/química , Polímeros/química , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Polímeros/farmacologia
4.
Biomacromolecules ; 14(3): 626-36, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23360180

RESUMO

The purpose of this study is to investigate the combined effects of oxygen plasma treatments and silver nanoparticles (Ag) on PLGA in order to modulate the surface antimicrobial properties through tunable bacteria adhesion mechanisms. PLGA nanocomposite films, produced by solvent casting with 1 wt % and 7 wt % of Ag nanoparticles were investigated. The PLGA and PLGA/Ag nanocomposite surfaces were treated with oxygen plasma. Surface properties of PLGA were investigated by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), static contact angle (CA), and high resolution X-ray photoelectron spectroscopy (XPS). Antibacterial tests were performed using an Escherichia coli RB (a Gram negative) and Staphylococcus aureus 8325-4 (a Gram positive). The PLGA surface becomes hydrophilic after the oxygen treatment and its roughness increases with the treatment time. The surface treatment and the Ag nanoparticle introduction have a dominant influence on the bacteria adhesion and growth. Oxygen-treated PLGA/Ag systems promote higher reduction of the bacteria viability in comparison to the untreated samples and neat PLGA. The combination of Ag nanoparticles with the oxygen plasma treatment opens new perspectives for the studied biodegradable systems in biomedical applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Nanopartículas Metálicas/química , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Prata/química , Aderência Bacteriana , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanocompostos/química , Oxigênio/sangue , Oxigênio/química , Espectroscopia Fotoeletrônica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prata/análise , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
5.
Recent Pat Drug Deliv Formul ; 7(1): 9-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23017149

RESUMO

The application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanostructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Polímeros/administração & dosagem , Células-Tronco/fisiologia , Engenharia Tecidual , Animais , Humanos , Nanoestruturas , Porosidade
6.
Tissue Eng Part A ; 15(10): 3139-49, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19344290

RESUMO

The interaction between stem cells and biomaterials with nanoscale topography represents a main route in the roadmap for tissue engineering-based strategies. In this study, we explored the interface between human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and hydrogenated amorphous carbon (a-C:H) film designed with uniform, groove, or grid nanopatterns. In either case, hBM-MSCs preserved growth rate and multi-differentiation properties, suggesting that the films were biocompatible and suitable for stem cell culture. hBM-MSCs responded to different nanopattern designs with specific changes of microtubule organization. In particular, the grid pattern induced a square-localized distribution of alpha-tubulin/actin fibers, whereas the groove pattern exerted a more dynamic effect, associated with microtubule alignment and elongation.


Assuntos
Células da Medula Óssea/citologia , Carbono/química , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanoestruturas/química , Engenharia Tecidual/métodos , Actinas/metabolismo , Materiais Biocompatíveis/química , Humanos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA