Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1868, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015907

RESUMO

Raising the temperature of a material enhances the thermal motion of particles. Such an increase in thermal energy commonly leads to the melting of a solid into a fluid and eventually vaporises the liquid into a gaseous phase of matter. Here, we study the finite-temperature physics of dipolar quantum fluids and find surprising deviations from this general phenomenology. In particular, we describe how heating a dipolar superfluid from near-zero temperatures can induce a phase transition to a supersolid state with a broken translational symmetry. We discuss the observation of this effect in experiments on ultracold dysprosium atoms, which opens the door for exploring the unusual thermodynamics of dipolar quantum fluids.

2.
Chaos ; 32(11): 113112, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456347

RESUMO

To facilitate the analysis of pattern formation and the related phase transitions in Bose-Einstein condensates, we present an explicit approximate mapping from the nonlocal Gross-Pitaevskii equation with cubic nonlinearity to a phase field crystal (PFC) model. This approximation is valid close to the superfluid-supersolid phase transition boundary. The simplified PFC model permits the exploration of bifurcations and phase transitions via numerical path continuation employing standard software. While revealing the detailed structure of the bifurcations present in the system, we demonstrate the existence of localized states in the PFC approximation. Finally, we discuss how higher-order nonlinearities change the structure of the bifurcation diagram representing the transitions found in the system.

3.
Phys Rev Lett ; 120(16): 163903, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756941

RESUMO

In this Letter, we show that it is possible to structure the longitudinal polarization component of light. We illustrate our approach by demonstrating linked and knotted longitudinal vortex lines acquired upon nonparaxially propagating a tightly focused subwavelength beam. The remaining degrees of freedom in the transverse polarization components can be exploited to generate customized topological vector beams.

4.
Phys Rev Lett ; 116(16): 163902, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152806

RESUMO

We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.

5.
Phys Rev Lett ; 106(17): 170401, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21635018

RESUMO

We propose a scheme for the creation of stable three-dimensional bright solitons in Bose-Einstein condensates, i.e., the matter-wave analog of so-called spatiotemporal "light bullets." Off-resonant dressing to Rydberg nD states is shown to provide nonlocal attractive interactions, leading to self-trapping of mesoscopic atomic clouds by a collective excitation of a Rydberg atom pair. We present detailed potential calculations and demonstrate the existence of stable solitons under realistic experimental conditions by means of numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA