Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 45152-45162, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046325

RESUMO

The intricate role of temperature in the structure-property relationship of manganese oxide nanoparticles (Mn3O4 NPs) remains an open question. In this study, we successfully synthesized Mn3O4 NPs using the hydrothermal method with two differing temperatures, namely, 90 and 150 °C. Interestingly, a smaller average particle size is found when Mn3O4 NPs are synthesized at 150 °C compared to 90 °C, corresponding to 46.54 and 63.37 nm, respectively. This was confirmed by the time variation of temperature setting of 150 °C where the size evolution was insignificant, indicating a competing effect of nucleation and growth particles. Under varying NaOH concentrations (2-6 M) at 150 °C, a reduction in the particle size is found at the highest NaOH concentration (6 M). The particle grows slightly, indicating that the growth state is dominant compared to the nucleation state at low concentrations of NaOH. This finding implies that the high nucleation rate originates from the excessive monomer supply in the high-temperature reaction. In terms of crystallinity order, the structural arrangement of Mn3O4 NPs (150 °C) is largely decreased; this is likely due to a facile redox shift to the higher oxidation state of manganese. In addition, the higher ratio of adsorbed oxygen and lattice oxygen in Mn3O4 NPs at 150 °C is indirectly due to the higher oxygen vacancy occupancies, which supported the crystallinity decrease. Our findings provide a new perspective on manganese oxide formation in hydrothermal systems.

2.
ACS Omega ; 7(12): 10516-10525, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382322

RESUMO

The PAN/TiO2/Ag nanofibers membrane for air filtration media was successfully synthesized with electrospinning method. The morphology, size, and element percentage of the nanofiber were characterized by a scanning electron microscopy-energy dispersive spectroscopy, while X-ray fluorescence and FTIR were used to observe the chemical composition. The water contact angle and UV-vis absorption were measured for physical properties. Performance for air filtration media was measured by pressure drop, efficiency, and quality factor test. TiO2 and Ag have been successfully deposited in nonuniform 570 nm PAN/TiO2/Ag nanofibers. The nanofiber membrane had hydrophilic surface after TiO2 and Ag addition with a water contact angle of 34.58°. UV-vis data showed the shifting of absorbance and band gap energy of nanofibers membrane to visible light from 3.8 to 1.8 eV. The 60 min spun PAN/TiO2/Ag nanofibers membrane had a 96.9% efficiency of PM2.5, comparable to results reported in previous studies. These properties were suitable to be applied on air filtration media with photocatalytic activity for self-cleaning performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA