Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38381653

RESUMO

A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria-bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5. Bacterial populations were assessed over time in experimental systems of increasing complexity. In vitro, SM5 was outcompeted when CHA0 reached a certain cell density, resulting in the collapse of the SM5 population. In contrast, both bacteria were able to coexist upon haemolymph-injection into Galleria mellonella larvae, as found for three further EPP-NAB combinations. Finally, both bacteria were administered by natural infection routes i.e. orally for CHA0 and nematode-vectored for SM5 resulting in the addition of RS5 to the system. This did not alter bacterial coexistence nor did the presence of the EPP affect nematode reproductive success or progeny virulence. CHA0 benefited from RS5, probably by exploiting access routes formed by the nematodes penetrating the larval gut epithelium. Our results indicate that EPPs are able to share an insect host with EPNs and their mutualistic bacteria without major negative effects on the reproduction of any of the three entomopathogens or the fitness of the nematodes. This suggests that their combination is a promising strategy for biological insect pest control.


Assuntos
Mariposas , Rabditídios , Animais , Insetos , Mariposas/microbiologia , Larva/microbiologia , Simbiose , Rabditídios/microbiologia
2.
Microb Ecol ; 86(3): 1947-1960, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36849610

RESUMO

Combining different biocontrol agents (BCA) is an approach to increase efficacy and reliability of biological control. If several BCA are applied together, they have to be compatible and ideally work together. We studied the interaction of a previously selected BCA consortium of entomopathogenic pseudomonads (Pseudomonas chlororaphis), nematodes (Steinernema feltiae associated with Xenorhabdus bovienii), and fungi (Metarhizium brunneum). We monitored the infection course in a leaf- (Pieris brassicae) and a root-feeding (Diabrotica balteata) pest insect after simultaneous application of the three BCA as well as their interactions inside the larvae in a laboratory setting. The triple combination caused the highest mortality and increased killing speed compared to single applications against both pests. Improved efficacy against P. brassicae was mainly caused by the pseudomonad-nematode combination, whereas the nematode-fungus combination accelerated killing of D. balteata. Co-monitoring of the three BCA and the nematode-associated Xenorhabdus symbionts revealed that the four organisms are able to co-infect the same larva. However, with advancing decay of the cadaver there is increasing competition and cadaver colonization is clearly dominated by the pseudomonads, which are known for their high competitivity in the plant rhizosphere. Altogether, the combination of the three BCA increased killing efficacy against a Coleopteran and a Lepidopteran pest which indicates that this consortium could be applied successfully against a variety of insect pests.


Assuntos
Controle Biológico de Vetores , Rabditídios , Animais , Reprodutibilidade dos Testes , Insetos , Larva/microbiologia , Rabditídios/microbiologia , Folhas de Planta
3.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406900

RESUMO

Plant-associated microbes can influence above- and belowground interactions between plants and other organisms and thus have significant potential for use in the management of agricultural ecosystems. However, fully realizing this potential will require improved understanding of the specific ways in which microbes influence plant ecology, which are both more complex and less well studied than the direct effects of microbes on host-plant physiology. Microbial effects on mutualistic and antagonistic interactions between plants and insects are of particular interest in this regard. This study examines the effects of two strains of Pseudomonas rhizobacteria on the direct and indirect (predator-mediated) resistance of tomato plants to a generalist herbivore (Spodoptera littoralis) and associated changes in levels of defense compounds. We observed no significant effects of rhizobacteria inoculation on caterpillar weight, suggesting that rhizobacteria did not influence direct resistance. However, the generalist predator Podisus maculiventris avoided plants inoculated with one of our rhizobacteria strains, Pseudomonas simiae. Consistent with these results, we found that inoculation with P. simiae influenced plant volatile emissions, but not levels of defense-related compounds. These findings show that rhizobacteria can negatively affect the attraction of generalist predators, while highlighting the complexity and context dependence of microbial effects on plant-insect interactions.

4.
ISME J ; 16(7): 1683-1693, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35273372

RESUMO

Environmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.e., phage tail-like particles. Little is known about the receptors for these tailocins especially among phylogenetically closely related species. Here, we studied the interaction between an R-tailocin from Pseudomonas protegens CHA0 and a targeted kin, Pseudomonas protegens Pf-5. Using genome-wide transposon insertion sequencing, we identified that lipopolysaccharides are involved in the sensitivity of Pf-5 towards the tailocin of CHA0. By generating Pf-5 lipopolysaccharide mutants and exposing them to extracted tailocin, we specified the two O-antigenic polysaccharides (O-PS) targeted by the tailocin. We affirmed the role of these O-PS through competition assays in vitro as well as in insects. Further, we demonstrate that O-PS are double-edge swords that are responsible for the sensitivity of P. protegens towards tailocins and phages produced by their kin, but shield bacteria from the immune system of the insect. Our results shed light on the trade-off that bacteria are confronted with, where specific O-PS decorations can both be of benefit or disadvantage depending on the host environment and its bacterial inhabitants.


Assuntos
Bacteriófagos , Antígenos O , Bacteriófagos/genética , Plantas/microbiologia , Pseudomonas/genética
5.
Environ Microbiol ; 24(8): 3273-3289, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315557

RESUMO

Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.


Assuntos
Insetos , Rizosfera , Animais , Bactérias/genética , Insetos/microbiologia , Raízes de Plantas/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Simbiose
6.
Environ Microbiol ; 23(9): 5378-5394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34190383

RESUMO

Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two-partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.


Assuntos
Artrópodes , Inseticidas , Animais , Variação Genética , Insetos , Inseticidas/farmacologia , Filogenia
7.
Appl Environ Microbiol ; 87(13): e0283120, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893115

RESUMO

Rhizobacteria in the genus Pseudomonas can enhance plant resistance to a range of pathogens and herbivores. However, resistance to these different classes of plant antagonists is mediated by different molecular mechanisms, and the extent to which induced systemic resistance by Pseudomonas can simultaneously protect plants against both pathogens and herbivores remains unclear. We screened 12 root-colonizing Pseudomonas strains to assess their ability to induce resistance in Arabidopsis thaliana against a foliar pathogen (Pseudomonas syringae DC3000) and a chewing herbivore (Spodoptera littoralis). None of our 12 strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these (Pseudomonas strain P97-38) also made plants more susceptible to herbivory. Phytohormone analyses revealed stronger salicylic acid induction in plants colonized by P97-38 (versus controls) following subsequent pathogen infection but weaker induction of jasmonic acid (JA)-mediated defenses following herbivory. We found no effects of P97-38 inoculation on herbivore-relevant nutrients such as sugars and protein, suggesting that the observed enhancement of susceptibility to S. littoralis is due to effects on plant defense chemistry rather than nutrition. These findings suggest that Pseudomonas strains that enhance plant resistance to pathogens may have neutral or negative effects on resistance to herbivores and provide insight into potential mechanisms associated with effects on different classes of plant antagonists. Improved understanding of these effects has potentially important implications for the use of rhizobacteria inoculation in agriculture. IMPORTANCE Plant-associated microbes have significant potential to enhance agricultural production, for example, by enhancing plant resistance to pathogens and pests. Efforts to identify beneficial microbial strains typically focus on a narrow range of desirable plant traits; however, microbial symbionts can have complex effects on plant phenotypes, including susceptibility and resistance to different classes of plant antagonists. We examined the effects of 12 strains of Pseudomonas rhizobacteria on plant (Arabidopsis) resistance to a lepidopteran herbivore and a foliar pathogen. None of our strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these made plants more susceptible to herbivory (likely via effects on plant defense chemistry). These findings indicate that microbial strains that enhance plant resistance to pathogens can have neutral or negative effects on resistance to herbivores, highlighting potential pitfalls in the application of beneficial rhizobacteria as biocontrol agents.


Assuntos
Arabidopsis/microbiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Defesa das Plantas contra Herbivoria , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Spodoptera/fisiologia , Animais , Fluorescência , Doenças das Plantas/microbiologia
8.
ISME J ; 14(11): 2766-2782, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32879461

RESUMO

Pseudomonas protegens shows a high degree of lifestyle plasticity since it can establish both plant-beneficial and insect-pathogenic interactions. While P. protegens protects plants against soilborne pathogens, it can also invade insects when orally ingested leading to the death of susceptible pest insects. The mechanism whereby pseudomonads effectively switch between lifestyles, plant-beneficial or insecticidal, and the specific factors enabling plant or insect colonization are poorly understood. We generated a large-scale transcriptomics dataset of the model P. protegens strain CHA0 which includes data from the colonization of wheat roots, the gut of Plutella xylostella after oral uptake and the Galleria mellonella hemolymph after injection. We identified extensive plasticity in transcriptomic profiles depending on the environment and specific factors associated to different hosts or different stages of insect infection. Specifically, motor-activity and Reb toxin-related genes were highly expressed on wheat roots but showed low expression within insects, while certain antimicrobial compounds (pyoluteorin), exoenzymes (a chitinase and a polyphosphate kinase), and a transposase exhibited insect-specific expression. We further identified two-partner secretion systems as novel factors contributing to pest insect invasion. Finally, we use genus-wide comparative genomics to retrace the evolutionary origins of cross-kingdom colonization.


Assuntos
Pseudomonas , Transcriptoma , Animais , Insetos , Raízes de Plantas , Pseudomonas/genética
9.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079630

RESUMO

We report the draft genome sequence of Pseudomonas sp. strain LD120, which was isolated from a brown macroalga in the Baltic Sea. The genome of this marine Pseudomonas protegens subgroup bacterium harbors biosynthetic gene clusters for toxic metabolites typically produced by members of this Pseudomonas subgroup, including 2,4-diacetylphloroglucinol, pyoluteorin, and rhizoxin analogs.

10.
Microbiol Resour Announc ; 8(39)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558637

RESUMO

Minor differences in the previously obtained genome of Pseudomonas protegens CHA0 were detected after resequencing the strain. Based on this, the genome size slightly increased. Additionally, we performed a manual annotation of genes involved in biocontrol and insect pathogenicity. This annotation version will be the basis for upcoming genome studies.

11.
Sci Rep ; 9(1): 3127, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816250

RESUMO

Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR), is the most destructive pest of maize in North America, and has recently spread across central Europe. Its subterranean larval stages are hard to reach with pesticides and it has evolved resistance to conventional management practices. The application of beneficial soil organisms is being considered as a sustainable and environmental friendly alternative. In a previous study, the combined application in wheat fields of arbuscular mycorrhizal fungi, entomopathogenic Pseudomonas bacteria, and entomopathogenic nematodes was found to promote growth and protection against a natural pest infestation, without negative cross effects. Because of the insect-killing capacity of the bacteria and nematodes, we hypothesized that the application of these organisms would have similar or even greater beneficial effects in WCR-infested maize fields. During three consecutive years (2015-2017), we conducted trials in Missouri (USA) in which we applied the three organisms, alone or in combinations, in plots that were artificially infested with WCR and in non-infested control plots. For two of the three trials, we found that in plots treated with entomopathogenic nematodes and/or entomopathogenic Pseudomonas bacteria, roots were less damaged than the roots of plants in control plots. During one year, WCR survival was significantly lower in plots treated with Pseudomonas than in control plots, and the surviving larvae that were recovered from these plots were lighter. The bacterial and nematodes treatments also enhanced yield, assessed as total grain weight, in one of the trials. The effects of the treatments varied considerable among the three years, but they were always positive for the plants.


Assuntos
Besouros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/parasitologia , Zea mays/parasitologia , Animais , Besouros/microbiologia , Besouros/parasitologia , Micorrizas/fisiologia , Nematoides/fisiologia , Controle Biológico de Vetores/métodos , Pseudomonas/fisiologia , Zea mays/fisiologia
12.
ISME J ; 13(5): 1318-1329, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30683920

RESUMO

Pseudomonas protegens are multi-talented plant-colonizing bacteria that suppress plant pathogens and stimulate plant defenses. In addition, they are capable of invading and killing agriculturally important plant pest insects that makes them promising candidates for biocontrol applications. Here we assessed the role of type VI secretion system (T6SS) components of type strain CHA0 during interaction with larvae of the cabbage pest Pieris brassicae. We show that the T6SS core apparatus and two VgrG modules, encompassing the respective T6SS spikes (VgrG1a and VgrG1b) and associated effectors (RhsA and Ghh1), contribute significantly to insect pathogenicity of P. protegens in oral infection assays but not when bacteria are injected directly into the hemolymph. Monitoring of the colonization levels of P. protegens in the gut, hemolymph, and excrements of the insect larvae revealed that the invader relies on T6SS and VgrG1a module function to promote hemocoel invasion. A 16S metagenomic analysis demonstrated that T6SS-supported invasion by P. protegens induces significant changes in the insect gut microbiome affecting notably Enterobacteriaceae, a dominant group of the commensal gut bacteria. Our study supports the concept that pathogens deploy T6SS-based strategies to disrupt the commensal microbiota in order to promote host colonization and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Insetos/microbiologia , Pseudomonas/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Animais , Proteínas de Bactérias/genética , Comportamento Alimentar , Insetos/fisiologia , Larva/microbiologia , Larva/fisiologia , Pseudomonas/genética , Simbiose , Sistemas de Secreção Tipo VI/genética
13.
ISME J ; 13(4): 860-872, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30504899

RESUMO

The discovery of insecticidal activity in root-colonizing pseudomonads, best-known for their plant-beneficial effects, raised fundamental questions about the ecological relevance of insects as alternative hosts for these bacteria. Since soil bacteria are limited in their inherent abilities of dispersal, insects as vectors might be welcome vehicles to overcome large distances. Here, we report on the transmission of the root-colonizing, plant-beneficial and insecticidal bacterium Pseudomonas protegens CHA0 from root to root by the cabbage root fly, Delia radicum. Following ingestion by root-feeding D. radicum larvae, CHA0 persisted inside the insect until the pupal and adult stages. The emerging flies were then able to transmit CHA0 to a new plant host initiating bacterial colonization of the roots. CHA0 did not reduce root damages caused by D. radicum and had only small effects on Delia development suggesting a rather commensal than pathogenic relationship. Interestingly, when the bacterium was fed to two highly susceptible lepidopteran species, most of the insects died, but CHA0 could persist throughout different life stages in surviving individuals. In summary, this study investigated for the first time the interaction of P. protegens CHA0 and related strains with an insect present in their rhizosphere habitat. Our results suggest that plant-colonizing pseudomonads have different strategies for interaction with insects. They either cause lethal infections and use insects as food source or they live inside insect hosts without causing obvious damages and might use insects as vectors for dispersal, which implies a greater ecological versatility of these bacteria than previously thought.


Assuntos
Brassica/microbiologia , Dípteros/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Microbiologia do Solo , Animais , Antibiose , Dípteros/crescimento & desenvolvimento , Dípteros/fisiologia , Herbivoria , Larva/microbiologia , Larva/fisiologia , Pseudomonas/química , Pseudomonas/classificação , Pupa/microbiologia , Pupa/fisiologia , Rizosfera , Simbiose
14.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29701793

RESUMO

Conservation tillage and organic farming are strategies used worldwide to preserve the stability and fertility of soils. While positive effects on soil structure have been extensively reported, the effects on specific root- and soil-associated microorganisms are less known. The aim of this study was to investigate how conservation tillage and organic farming influence the frequency and activity of plant-beneficial pseudomonads. Amplicon sequencing using the 16S rRNA gene revealed that Pseudomonas is among the most abundant bacterial taxa in the root microbiome of field-grown wheat, independent of agronomical practices. However, pseudomonads carrying genes required for the biosynthesis of specific antimicrobial compounds were enriched in samples from conventionally farmed plots without tillage. In contrast, disease resistance tests indicated that soil from conventional no tillage plots is less resistant to the soilborne pathogen Pythium ultimum compared to soil from organic reduced tillage plots, which exhibited the highest resistance of all compared cropping systems. Reporter strain-based gene expression assays did not reveal any differences in Pseudomonas antimicrobial gene expression between soils from different cropping systems. Our results suggest that plant-beneficial pseudomonads can be favoured by certain soil cropping systems, but soil resistance against plant diseases is likely determined by a multitude of biotic factors in addition to Pseudomonas.


Assuntos
Antibiose/fisiologia , Antiparasitários/metabolismo , Resistência à Doença/fisiologia , Agricultura Orgânica/métodos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Raízes de Plantas/microbiologia , Pseudomonas/metabolismo , Pythium/efeitos dos fármacos , Triticum/parasitologia , Fazendas , Microbiota , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Triticum/microbiologia
15.
Oecologia ; 187(2): 469, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511856

RESUMO

Unfortunately, family name of author "Xavier Chiriboga M" was incorrectly identified in the original publication and the same is corrected here. The original article has been corrected.

16.
Oecologia ; 187(2): 459-468, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29423754

RESUMO

When larvae of rootworms feed on maize roots they induce the emission of the sesquiterpene (E)-ß-caryophyllene (EßC). EßC is attractive to entomopathogenic nematodes, which parasitize and rapidly kill the larvae, thereby protecting the roots from further damage. Certain root-colonizing bacteria of the genus Pseudomonas also benefit plants by promoting growth, suppressing pathogens or inducing systemic resistance (ISR), and some strains also have insecticidal activity. It remains unknown how these bacteria influence the emissions of root volatiles. In this study, we evaluated how colonization by the growth-promoting and insecticidal bacteria Pseudomonas protegens CHA0 and Pseudomonas chlororaphis PCL1391 affects the production of EßC upon feeding by larvae of the banded cucumber beetle, Diabrotica balteata Le Conte (Coleoptera: Chrysomelidae). Using chemical analysis and gene expression measurements, we found that EßC production and the expression of the EßC synthase gene (tps23) were enhanced in Pseudomonas protegens CHA0-colonized roots after 72 h of D. balteata feeding. Undamaged roots colonized by Pseudomonas spp. showed no measurable increase in EßC production, but a slight increase in tps23 expression. Pseudomonas colonization did not affect root biomass, but larvae that fed on roots colonized by P. protegens CHA0 tended to gain more weight than larvae that fed on roots colonized by P. chlororaphis PCL1391. Larvae mortality on Pseudomonas spp. colonized roots was slightly, but not significantly higher than on non-colonized control roots. The observed enhanced production of EßC upon Pseudomonas protegens CHA0 colonization may enhance the roots' attractiveness to entomopathogenic nematodes, but this remains to be tested.


Assuntos
Besouros , Sesquiterpenos , Animais , Larva , Raízes de Plantas , Sesquiterpenos Policíclicos , Zea mays
17.
Front Plant Sci ; 8: 1809, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163562

RESUMO

In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by the frit fly, Oscinella frit, a major pest of cereals. Hence, beneficial impacts differed between the beneficial soil organisms and were most evident for plants under biotic stress. Overall, our findings indicate that in wheat production under the test conditions the three beneficial soil organisms can establish nicely and are compatible, but their combined application provides no additional benefits. Further studies are required, also in other cropping systems, to fine-tune the functional interactions among beneficial soil organisms, crops, and the environment.

18.
Front Plant Sci ; 8: 427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424714

RESUMO

Strains of Pseudomonas that produce antimicrobial metabolites and control soilborne plant diseases have often been isolated from soils defined as disease-suppressive, i.e., soils, in which specific plant pathogens are present, but plants show no or reduced disease symptoms. Moreover, it is assumed that pseudomonads producing antimicrobial compounds such as 2,4-diacetylphloroglucinol (DAPG) or phenazines (PHZ) contribute to the specific disease resistance of suppressive soils. However, pseudomonads producing antimicrobial metabolites are also present in soils that are conducive to disease. Currently, it is still unknown whether and to which extent the abundance of antimicrobials-producing pseudomonads is related to the general disease resistance of common agricultural soils. Moreover, virtually nothing is known about the conditions under which pseudomonads express antimicrobial genes in agricultural field soils. We present here results of the first side-by-side comparison of 10 representative Swiss agricultural soils with a cereal-oriented cropping history for (i) the resistance against two soilborne pathogens, (ii) the abundance of Pseudomonas bacteria harboring genes involved in the biosynthesis of the antimicrobials DAPG, PHZ, and pyrrolnitrin on roots of wheat, and (iii) the ability to support the expression of these genes on the roots. Our study revealed that the level of soil disease resistance strongly depends on the type of pathogen, e.g., soils that are highly resistant to Gaeumannomyces tritici often are highly susceptible to Pythium ultimum and vice versa. There was no significant correlation between the disease resistance of the soils, the abundance of Pseudomonas bacteria carrying DAPG, PHZ, and pyrrolnitrin biosynthetic genes, and the ability of the soils to support the expression of the antimicrobial genes. Correlation analyses indicated that certain soil factors such as silt, clay, and some macro- and micronutrients influence both the abundance and the expression of the antimicrobial genes. Taken together, the results of this study suggests that pseudomonads producing DAPG, PHZ, or pyrrolnitrin are present and abundant in Swiss agricultural soils and that the soils support the expression of the respective biosynthetic genes in these bacteria to various degrees. The precise role that these pseudomonads play in the general disease resistance of the investigated agricultural soils remains elusive.

19.
Front Microbiol ; 8: 100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28217113

RESUMO

Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whether these compounds also contribute to insecticidal activity. We tested mutants of the highly insecticidal strains Pseudomonas protegens CHA0, Pseudomonas chlororaphis PCL1391, and Pseudomonas sp. CMR12a, defective for individual or multiple antimicrobial compounds, for injectable and oral activity against lepidopteran insect larvae. Moreover, we studied expression of biosynthesis genes for these antimicrobial compounds for the first time in insects. Our survey revealed that hydrogen cyanide and different types of cyclic lipopeptides contribute to insecticidal activity. Hydrogen cyanide was essential to full virulence of CHA0 and PCL1391 directly injected into the hemolymph. The cyclic lipopeptide orfamide produced by CHA0 and CMR12a was mainly important in oral infections. Mutants of CMR12a and PCL1391 impaired in the production of the cyclic lipopeptides sessilin and clp1391, respectively, showed reduced virulence in injection and feeding experiments. Although virulence of mutants lacking one or several of the other antimicrobial compounds, i.e., 2,4-diacetylphloroglucinol, phenazines, pyrrolnitrin, or pyoluteorin, was not reduced, these metabolites might still play a role in an insect background since all investigated biosynthetic genes for antimicrobial compounds of strain CHA0 were expressed at some point during insect infection. In summary, our study identified new factors contributing to insecticidal activity and extends the diverse functions of antimicrobial compounds produced by fluorescent pseudomonads from the plant environment to the insect host.

20.
Environ Microbiol ; 18(11): 4265-4281, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727519

RESUMO

Some plant-beneficial pseudomonads can invade and kill pest insects in addition to their ability to protect plants from phytopathogens. We explored the genetic basis of O-polysaccharide (O-PS, O-antigen) biosynthesis in the representative insecticidal strains Pseudomonas protegens CHA0 and Pseudomonas chlororaphis PCL1391 and investigated its role in insect pathogenicity. Both strains produce two distinct forms of O-PS, but differ in the organization of their O-PS biosynthesis clusters. Biosynthesis of the dominant O-PS in both strains depends on a gene cluster similar to the O-specific antigen (OSA) cluster of Pseudomonas aeruginosa. In CHA0 and other P. protegens strains, the OSA cluster is extensively reduced and new clusters were acquired, resulting in high diversity of O-PS structures, possibly reflecting adaptation to different hosts. CHA0 mutants lacking the short OSA form of O-PS were significantly impaired in insect virulence in Galleria injection and Plutella feeding assays. CHA0, PCL1391, and other insecticidal pseudomonads exhibited high resistance to antimicrobial peptides, including cecropins that are central to insect immune defense. Resistance of both model strains depended on the dominant OSA-type O-PS. Our results suggest that O-antigen is essential for successful insect infection and illustrate, for the first time, its importance in resistance of Pseudomonas to antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Mariposas/microbiologia , Antígenos O/biossíntese , Doenças das Plantas/parasitologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Alimentar , Mariposas/fisiologia , Plantas/microbiologia , Plantas/parasitologia , Pseudomonas/genética , Pseudomonas/patogenicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA