Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sports Med Open ; 4(1): 1, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29299780

RESUMO

BACKGROUND: Immersion pulmonary edema is potentially a catastrophic condition; however, the pathophysiological mechanisms are ill-defined. This study assessed the individual and combined effects of exertion and negative pressure breathing on the cardiovascular system during the development of pulmonary edema in SCUBA divers. METHODS: Sixteen male professional SCUBA divers performed four SCUBA dives in a freshwater pool at 1 m depth while breathing air at either a positive or negative pressure both at rest or with exercise. Echocardiography and lung ultrasound were used to assess the cardiovascular changes and lung comet score (a measure of interstitial pulmonary edema). RESULTS: The ultrasound lung comet score was 0 following both the dives at rest regardless of breathing pressure. Following exercise, the mean comet score rose to 4.2 with positive pressure breathing and increased to 15.1 with negative pressure breathing. The development of interstitial pulmonary edema was significantly related to inferior vena cava diameter, right atrial area, tricuspid annular plane systolic excursion, right ventricular fractional area change, and pulmonary artery pressure. Exercise combined with negative pressure breathing induced the greatest changes in these cardiovascular indices and lung comet score. CONCLUSIONS: A diver using negative pressure breathing while exercising is at greatest risk of developing interstitial pulmonary edema. The development of immersion pulmonary edema is closely related to hemodynamic changes in the right but not the left ventricle. Our findings have important implications for divers and understanding the mechanisms of pulmonary edema in other clinical settings.

2.
Am J Cardiol ; 119(6): 929-932, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28189252

RESUMO

This study assessed the relation between altered cardiac function and the development of interstitial pulmonary edema in scuba divers. Fifteen healthy men performed a 30-minute scuba dive in open sea. They were instructed to fin for 30 minutes and were wearing wet suits. Before and immediately after immersion, cardiac indexes and extravascular lung water were measured using echocardiography and lung ultrasound, respectively. The mean ultrasound lung comet score increased from 0 to 4.6 ± 3.4. The diameter of the inferior caval vein increased by 47 ± 5.2%, systolic pulmonary artery pressure by 105 ± 8.6%, left atrial volume by 18.0 ± 3.3%, and left ventricle end-diastolic volume by 10 ± 2.4% suggesting that both right and left ventricular (LV) filling pressures were elevated. Doppler studies showed an increased mitral E peak (+2.5 ± 0.3%) and E/A ratio (+22.5 ± 3.4%) with a decreased mitral A peak (-16.4 ± 2.7%), E peak deceleration time (-14.5 ± 2.4%) consistent with rapid early LV filling but without a change in LV stroke volume. There was an increase in right/left ventricle diameter ratio (+33.6 ± 4.8%) suggesting a relative increase in right-sided heart output compared with the left. Furthermore, the lung comet score correlated significantly with inferior caval vein diameter, systolic pulmonary artery pressure, right/left ventricle diameter ratio, and E-wave deceleration time. In conclusion, the altered right/left heart stroke volume balance could play an essential role in the development of immersion pulmonary edema. Our findings have important implications for the pathogenesis of cardiogenic pulmonary edema.


Assuntos
Mergulho , Água Extravascular Pulmonar/diagnóstico por imagem , Água Extravascular Pulmonar/metabolismo , Ventrículos do Coração/diagnóstico por imagem , Adulto , Ecocardiografia , Voluntários Saudáveis , Testes de Função Cardíaca , Hemodinâmica , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA