RESUMO
Therapeutic monoclonal antibodies (t-mAbs) are crucial for treating various conditions, including cancers and autoimmune disorders. Accurate quantitation and pharmacokinetic monitoring of t-mAbs in serum are essential, but current methods like ligand binding assays (LBAs) and bottom-up peptide liquid chromatography-tandem mass spectrometry (LC-MS/MS) can lack the sensitivity and specificity needed to meet clinical demands. Emerging techniques using high-resolution mass spectrometry (HRMS) in top-down and middle-up approaches offer improved ability to accurately quantify mAb proteoforms apart from degradation products by keeping the sample proteins intact or minimizing digestion. This study describes the first use of Gábor transform (GT)-based iFAMS Quant+ software to quantify a t-mAb (vedolizumab) from â¼400 samples using an Agilent 6545XT AdvanceBio Q-TOF at the University of Oregon. These results are compared to a previously validated laboratory-developed test (LDT) from Mayo Clinic utilizing a Thermo Q Exactive Plus Orbitrap. The Mayo method used conventional extracted ion chromatograms (XICs) of select charge states for quantitation, while the iFAMS Quant+ method utilized GT-based charge state deconvolution, background subtraction, and signal integration. Calibration and quality control (QC) analyses and Passing-Bablok regression of 351 subject samples demonstrated excellent agreement between the two methods. The iFAMS Quant+ workflow exhibited unique advantages for characterizing interferents and analyte signal anomalies due to its deconvolution-based approach.
RESUMO
INTRODUCTION: 2,3-dinor 11ß-Prostaglandin F2α (BPG) is an arachidonic acid derivative and the most abundant metabolic byproduct of prostaglandin D2, which is released during mast cell activation. Therefore, measurements of BPG in urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a noninvasive method for evaluation and management of mast cell disorders. Measurements obtained by LC-MS/MS exhibit a high prevalence of chromatographic interferences resulting in challenges with optimal determination of BGP. In this investigation, differential mobility spectrometry (DMS) is utilized to overcome the limitations of current testing. METHODS: Urine samples were extracted using an automated solid-phase extraction method. Samples were then analyzed with and without DMS devices installed on two commercially available mass spectrometry platforms to assess the benefits of DMS. Following promising results from a preliminary analytical evaluation, LC-DMS-MS/MS measurements of BPG in urine were fully validated to assess the analytical implications of using this technology. RESULTS AND DISCUSSION: The addition of DMS devices to the LC-MS/MS systems evaluated in this investigation significantly reduced interferences observed in the chromatograms. Concomitantly, DMS reduced the number of discordant quantifier/qualifier fragment ion results that significantly exceeded the ± 20 % limits, suggesting greater analytical specificity. The validation studies yielded low interday imprecision, with %CVs less than 6.5 % across 20 replicate measurements. Validation studies assessing other aspects of analytical performance also met acceptance criteria. CONCLUSIONS: Incorporating DMS devices greatly improved the specificity of BPG measurements by LC-MS/MS, as evidenced by the comparison of chromatograms and fragment ion results. Validation studies showed exceptional performance for established analytical metrics, indicating that this technology can be used to minimize the impact of interferences without adversely impacting other aspects of analytical or clinical performance.
Assuntos
Dinoprosta , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Análise Espectral , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Introduction: Therapeutic drug monitoring of infliximab has become the standard of care for inflammatory bowel disease in the setting of loss of response to therapy, and occasionally in proactive therapy personalization. Measurement of infliximab by tryptic peptide HPLC-MS/MS has been available since 2015, mostly in reference laboratories. Objectives: Here, we present method improvements to our original published method leading to a more efficient, robust, and high throughput tryptic peptide HPLC-MS/MS assay for infliximab quantitation. Methods: Deidentified residual serum samples submitted for clinical testing were used for method comparison and infliximab was spiked into normal human serum for performance studies. Improvements included the addition of a stable isotope labeled full length infliximab internal standard (IS) replacing a surrogate IS, and immunoenrichment using Melon Gel for immunoglobulins replacing the saturated ammonium sulfate precipitation. Digestion and chromatography were optimized, and automation was added. The method improvements were validated to include precision, accuracy, reportable range, linearity, and analytical sensitivity. Results: The digestion time was reduced from overnight to 1 h. The assay analytical measuring range (AMR) remained the same throughout improvements, 1-100 µg/mL, with linearity of 0.98x + 0.50, R2 = 1.00. Intra- and inter-assay imprecision were less than 5 % CV at four different concentrations. Accuracy was assessed with 106 patients within the AMR; Passing-Bablok Regression yielded a slope of 1.00 and a y-intercept of 0.25. Turnaround time was reduced by 1 day, and imprecision of three levels of quality control trended down after new method implementation. Conclusions: Method improvements including automation have allowed for assay completion in half a day, improving robustness and turnaround time.
RESUMO
Introduction: Steroid measurements are important for diagnosis and monitoring of many conditions and treatment regiments; however, due to structural and chemical similarities amongst steroids, these analyses are challenging, even for highly specific techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differential mobility spectrometry (DMS) has the potential to improve these analyses by providing an orthogonal and complementary separation technique. Methods: Initially, the potential for DMS to improve signal-to-noise ratio (S/N) and reduce interference was tested by comparing chromatograms acquired with and without DMS when performing measurements of six different steroids. Subsequently, a full clinical validation of cortisol and cortisone in urine was performed with the LC-DMS-MS/MS method. Results and Discussion: DMS significantly reduced interferences observed in the chromatograms and boosted S/N by between 1.6 and 13.8 times. Additionally, DMS improved the agreement between quantifier/qualifier fragment ion results for cortisol and cortisone as indicated by the increase in R2 from approximately 0.81 to 0.98. All validation studies met acceptance criteria and we observed exceptional analytical performance in terms of precision, with % CVs less than 8%. Conclusions: DMS improved the specificity of the steroid measurements by reducing interferences and improving S/N. The validation studies prove that these benefits did not come at the expense of other aspects of analytical performance. This study indicates that DMS has the potential to benefit not just clinical measurements of challenging analytes, but many clinical LC-MS/MS analyses.
RESUMO
Phosphatidylethanol (PEth) is a group of phospholipids formed exclusively in the presence of ethanol on the erythrocyte membrane, making it a direct biomarker for long-term ethanol consumption for which a clinical reference interval has been established. Here, we describe an assay for quantitation for two most abundant PEth homologues, PEth 16:0/18:1 and PEth 16:0/18:2, from human whole blood, and present challenges overcome throughout the development process. Since PEth is localized within erythrocyte membranes, a reliable sample preparation technique is an important aspect of PEth analysis. Therefore, various erythrocyte lysing agents for recovery of exogenously spiked standards and controls were evaluated to identify one that performed comparably to the recovery of endogenous analytes found in authentic samples. A supported liquid extraction (SLE) technique was employed for sample cleanup and enrichment which together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis enabled automated sample preparation, appropriate chromatographic resolution, and minimal system carryover. This resulted in a laboratory developed test with an analytical measurement range (AMR) of 10-1000 ng/mL (slope = 0.9902-1.0138, R2 = 0.9958-0.9972), that was precise (intra-day precision: 3.4-4.1%; inter-day precision: 4.4-8.2% over the AMR), accurate when compared with an available external laboratory test (slope = 0.9943-1.0206, R2 = 0.9635-0.9678, no lower decision point interpretation changes), with effective analyte recovery (77.2-83.5%), and established stability characteristics, while chromatographically separating the analytes to ensure no additive effects due to the isotopic distribution of the opposing analyte.
Assuntos
Glicerofosfolipídeos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Etanol , BiomarcadoresRESUMO
Human pancreatic polypeptide (HPP) is a 36 amino acid peptide hormone that plays a role in the bidirectional communication between the digestive system and the brain. HPP measurements are used to assess vagal nerve function following sham feeding and to detect gastroenteropancreatic-neuroendocrine tumors. These tests have historically been conducted by radioimmunoassays, but liquid chromatography-tandem mass spectrometry (LC-MS/MS) has several advantages such as improved specificity and elimination of radioactive molecules. Here, we present our LC-MS/MS method. Initially, samples were immunopurified and subjected to LC-high resolution accurate mass tandem mass spectrometry (HRAM-MS/MS) to identify circulating forms of the peptide in human plasma. We identified 23 forms of HPP, including several glycosylated forms. The most abundant peptides then were used for targeted LC-MS/MS measurements. LC-MS/MS performance for precision, accuracy, linearity, recovery, limit of detection, and carryover met our acceptance criteria based on CLIA regulations. Additionally, we observed the expected physiological rise in HPP in response to sham feeding. Our results indicate that HPP measurement by LC-MS/MS produces clinically equivalent results to our established immunoassay when several peptides are monitored, making it a suitable replacement. The measurement of peptide fragments, including modified species, might have additional clinical value.
Assuntos
Polipeptídeo Pancreático , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos , Imunoensaio/métodosRESUMO
Pyridoxal-5'-phosphate (PLP), the active form of vitamin B6, is required for numerous enzymatic reactions. Vitamin B6 deficiency or exceptionally high levels of PLP have negative implications, making measurements of PLP imperative for diagnoses and monitoring in many clinical scenarios. Traditional assays are enzymatic, ELISA based, or employ HPLC with various detection modalities; all of these are prone to interferences and crossreactivity with other compounds. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly used to overcome these issues, but the high polarity of PLP raises chromatographic challenges. Using ion pairing reagents in the mobile phases is a possible solution, but these reagents often have deleterious effects on instrumentation. An alternative strategy is the addition of an ion pairing reagent after extraction, but prior to injection. To prove this, we used 1-octanesulfonic acid (OSA) without changing the LC method or column. With this technique, we observed a 2-4 fold increase in signal-to-noise ratio. Intraday and interday precision of replicate measurements also improved drastically compared to analyses without OSA, while also yielding a dramatic improvement in column life compared to our previous approach and to this point no deleterious effects on instrument hardware commonly associated with traditional ion pairing reagent techniques have been observed.
Assuntos
Cromatografia Líquida , Fosfato de Piridoxal , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Fosfatos , Fosfato de Piridoxal/análise , Espectrometria de Massas em Tandem/métodosRESUMO
INTRODUCTION: Apolipoprotein E (ApoE) genotyping has been shown to have diagnostic value in the evaluation of cardiovascular diseases and neurodegenerative disorders such as Alzheimer's disease. Although genetic testing is well established for this application, liquid chromatography-mass spectrometry (LC-MS) has the potential to provide a high throughput, low-cost alternative for ApoE evaluation. METHODS: Serum samples were analyzed by peptide, intact protein, and genomic techniques. For peptide analysis, samples were digested with trypsin followed by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) using a high-throughput multichannel LC system coupled to a Sciex 7500 mass spectrometer. For intact protein analysis, ApoE was immuno-purified using a monoclonal antibody immobilized on magnetic beads followed by high-resolution LC-MS analysis using an Exploris 480. DNA was extracted and evaluated using Sanger sequencing as a reference method. RESULTS AND DISCUSSION: The peptide measurement method produced one discrepant result when compared to genomic sequencing (out of 38 sequenced samples), whereas the intact protein analysis followed by deconvolution resulted in two discrepant results and when the intact protein data was processed with chromatographic integration there were three discrepant results. Therefore, the intact protein method proved slightly less accurate, required longer analysis time, and is substantially more costly, while providing only a 30 min improvement in sample preparation time. CONCLUSIONS: With current MS technology clinical laboratories appear to be better served to utilize trypsin digest sample preparation and LC-MS/MS as opposed to high-resolution LC-MS intact protein analysis techniques for evaluation of ApoE proteotype. Peptide analysis methods are capable of producing accurate results with high throughput and minimal cost.
RESUMO
OBJECTIVE: To overcome the limitations of commercially available insulin immunoassays which have variable detection of analog insulin and can lead to clinically discordant results and misdiagnosis in the workup of factitious hypoglycemia. PATIENTS AND METHODS: We performed analytical validation of a liquid chromatography high resolution accurate mass (LC-HRAM) immunoassay to detect insulin analogs. We completed clinical assessment using a large cohort of human serum samples from 78 unique individuals, and subsequently used the assay in the evaluation of eight individuals with high diagnostic suspicion for factitious hypoglycemia. RESULTS: The performance characteristics show that the LC-HRAM immunoassay can be applied to detect five commonly used synthetic insulin analogs (lispro, glulisine, aspart, glargine metabolite, and detemir) in human serum. Our clinical cases show that this assay could be used in the diagnosis of factitious hypoglycemia by identifying the analog insulin(s) in question. CONCLUSION: The LC-HRAM immunoassay reported here overcomes a gap in our diagnostic pathway for hypoglycemia. The results obtained from our studies suggest that this method is appropriate for use in clinical laboratories when factitious hypoglycemia is considered as a differential diagnosis.
Assuntos
Hipoglicemia , Insulina , Humanos , Insulina/efeitos adversos , Insulina/análise , Hipoglicemia/induzido quimicamente , Hipoglicemia/diagnóstico , Imunoensaio/métodos , Hipoglicemiantes/efeitos adversosRESUMO
Targeted mass spectrometry-based platforms have become a valuable tool for the sensitive and specific detection of protein biomarkers in clinical and research settings. Traditionally, developing a targeted assay for peptide quantification has involved manually preselecting several fragment ions and establishing a limit of detection (LOD) and a lower limit of quantitation (LLOQ) for confident detection of the target. Established thresholds such as LOD and LLOQ, however, inherently sacrifice sensitivity to afford specificity. Here, we demonstrate that machine learning can be applied to qualitative PRM assays to discriminate positive from negative samples more effectively than a traditional approach utilizing conventional methods. To demonstrate the utility of this method, we trained an ensemble machine learning model using 282 SARS-CoV-2 positive and 994 SARS-CoV-2 negative nasopharyngeal swabs (NP swab) analyzed using a targeted PRM method. This model was then validated using an independent set of 200 positive and 150 negative samples and achieved a sensitivity of 92% relative to results obtained by RT-PCR, which was superior to a traditional approach that resulted in 86.5% sensitivity when analyzing the same data. These results demonstrate that machine learning can be applied to qualitative PRM assays and results in superior performance relative to traditional methods.
Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Aprendizado de Máquina , Espectrometria de Massas/métodos , Sensibilidade e EspecificidadeRESUMO
COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.
Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Cromatografia Líquida , Humanos , Nucleocapsídeo/genética , Peptídeos , Proteômica , Espectrometria de Massas em TandemRESUMO
SARS-CoV-2, a novel human coronavirus, has created a global disease burden infecting > 100 million humans in just over a year. RT-PCR is currently the predominant method of diagnosing this viral infection although a variety of tests to detect viral antigens have also been developed. In this study, we adopted a SISCAPA-based enrichment approach using anti-peptide antibodies generated against peptides from the nucleocapsid protein of SARS-CoV-2. We developed a targeted workflow in which nasopharyngeal swab samples were digested followed by enrichment of viral peptides using the anti-peptide antibodies and targeted parallel reaction monitoring (PRM) analysis using a high-resolution mass spectrometer. This workflow was applied to 41 RT-PCR-confirmed clinical SARS-CoV-2 positive nasopharyngeal swab samples and 30 negative samples. The workflow employed was highly specific as none of the target peptides were detected in negative samples. Further, the detected peptides showed a positive correlation with the viral loads as measured by RT-PCR Ct values. The SISCAPA-based platform described in the current study can serve as an alternative method for SARS-CoV-2 viral detection and can also be applied for detecting other microbial pathogens directly from clinical samples.
RESUMO
Mass spectrometry (MS) is widely used in science and industry. It allows accurate, specific, sensitive, and reproducible detection and quantification of a huge range of analytes. Across MS applications, quantification by MS has grown most dramatically, with >50 million experiments/year in the USA alone. However, quantification performance varies between instruments, compounds, different samples, and within- and across runs, necessitating normalization with analyte-similar internal standards (IS) and use of IS-corrected multipoint external calibration curves for each analyte, a complicated and resource-intensive approach, which is particularly ill-suited for multi-analyte measurements. We have developed an internal calibration method that utilizes the natural isotope distribution of an IS for a given analyte to provide internal multipoint calibration. Multiple isotope distribution calibrators for different targets in the same sample facilitate multiplex quantification, while the emerging random-access automated MS platforms should also greatly benefit from this approach. Finally, isotope distribution calibration allows mathematical correction for suboptimal experimental conditions. This might also enable quantification of hitherto difficult, or impossible to quantify, targets, if the distribution is adjusted in silico to mimic the analyte. The approach works well for high resolution, accurate mass MS for analytes with at least a modest-sized isotopic envelope. As shown herein, the approach can also be applied to lower molecular weight analytes, but the reduction in calibration points does reduce quantification performance.
Assuntos
Isótopos , Espectrometria de Massas em Tandem , Calibragem , Padrões de ReferênciaRESUMO
BACKGROUND: We evaluated the analytical sensitivity and specificity of 4 rapid antigen diagnostic tests (Ag RDTs) for severe acute respiratory syndrome coronavirus 2, using reverse transcription quantitative PCR (RT-qPCR) as the reference method and further characterizing samples using droplet digital quantitative PCR (ddPCR) and a mass spectrometric antigen test. METHODS: Three hundred fifty (150 negative and 200 RT-qPCR positive) residual PBS samples were tested for antigen using the BD Veritor lateral flow (LF), ACON LF, ACON fluorescence immunoassay (FIA), and LumiraDx FIA. ddPCR was performed on RT-qPCR-positive samples to quantitate the viral load in copies/mL applied to each Ag RDT. Mass spectrometric antigen testing was performed on PBS samples to obtain a set of RT-qPCR-positive, antigen-positive samples for further analysis. RESULTS: All Ag RDTs had nearly 100% specificity compared to RT-qPCR. Overall analytical sensitivity varied from 66.5% to 88.3%. All methods detected antigen in samples with viral load >1 500 000 copies/mL RNA, and detected ≥75% of samples with viral load of 500 000 to 1 500 000 copies/mL. The BD Veritor LF detected only 25% of samples with viral load between 50 000 to 500 000 copies/mL, compared to 75% for the ACON LF device and >80% for LumiraDx and ACON FIA. The ACON FIA detected significantly more samples with viral load <50 000 copies/mL compared to the BD Veritor. Among samples with detectable antigen and viral load <50 000 copies/mL, sensitivity of the Ag RDT varied between 13.0% (BD Veritor) and 78.3% (ACON FIA). CONCLUSIONS: Ag RDTs differ significantly in analytical sensitivity, particularly at viral load <500 000 copies/mL.
Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , Testes Imediatos , Humanos , Espectrometria de Massas , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Carga ViralRESUMO
BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.
Assuntos
Teste Sorológico para COVID-19/métodos , Imunoensaio/métodos , Espectrometria de Massas/métodos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Automação Laboratorial/métodos , Automação Laboratorial/normas , Teste Sorológico para COVID-19/normas , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunoensaio/normas , Aprendizado de Máquina , Espectrometria de Massas/normas , Fosfoproteínas/química , Fosfoproteínas/imunologia , Sensibilidade e EspecificidadeRESUMO
Insulin-like growth factor-1 (IGF-1) measurement by high-resolution accurate mass-mass spectrometry (HRAM-MS) is replacing IGF-1 immunoassays and allows for identification of single amino acid variants; by contrast, both normal and deleterious sequence variants might be missed by immunoassays or non-HRAM-MS methods. We have developed an intact molecule HRAM-MS method to identify IGF-1 variants, distinguishing them by a center of mass (COM) calculation, followed by various tandem-MS activation techniques (HCD, ETD, ETciD, EThcD, UVPD). We found single amino acid variants in 841 of 146â¯620 patient samples (0.57%). Most were benign (A67T, A70T). We also observed a pathogenic variant (V44M), likely pathogenic variants (A38V, V17M), and a likely benign variant (A67V). For 207 samples from unique patients with residual serum, the MS variant results were confirmed by cell-free DNA sequencing. Our approach allows accurate quantitative reporting of functional IGF-1 in the presence of single amino acid variants. The COM approach potentially enables omission of tandem-MS for known, common variants, while the combination of COM and tandem-MS allows accurate identification in all cases we encountered. This approach should be applicable to qualitative and quantitative analyses of other peptides/proteins in clinical and research settings and might lend itself to the characterization of other protein variations.
Assuntos
Fator de Crescimento Insulin-Like I , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Aminoácidos , Humanos , Fator de Crescimento Insulin-Like I/genética , Polimorfismo GenéticoRESUMO
The use of offline liquid chromatography-matrix assisted laser desorption/ionization (LC-MALDI) tandem mass spectrometry (MS/MS) for bottom-up proteomics offers advantages in terms of cost, ease of use, and the time-decoupled nature of the separation step and the mass analysis. A method was developed to improve the capabilities of LC-MALDI-MS/MS in terms of protein identification in a bottom-up proteomic workflow. Enhanced protein identification is achieved by an increase in the MALDI signal intensity of the precursor peptides brought about by coating the MALDI plate with a thin film of graphite powder. Using the Escherichia coli proteome, it is demonstrated that the graphite-modified MALDI plates used in an offline LC-MALDI-MS/MS bottom-up protocol led to a 50-135% increase in the number of peptide identifications, and a concomitant 21%-105% increase in the number of proteins inferred. We identify factors that lead to improvements in peptide sequence identifications and in the number of unique proteins identified when compared to using an unmodified MALDI plate. These improvements are achieved using a low cost approach that it is easy to implement, requires no hardware/protocol modification, it is compatible with LC and adds no additional analysis time.