Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Pathog ; 19(8): e1011544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37595007

RESUMO

Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.


Assuntos
Infecções por Astroviridae , Encéfalo , Adulto , Humanos , Sistema Nervoso Central , Neurônios , Imunidade
2.
Nat Commun ; 12(1): 2469, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927207

RESUMO

Recognition of Zika virus (ZIKV) sexual transmission (ST) among humans challenges our understanding of the maintenance of mosquito-borne viruses in nature. Here we dissected the relative contributions of the components of male reproductive system (MRS) during early male-to-female ZIKV transmission by utilizing mice with altered antiviral responses, in which ZIKV is provided an equal opportunity to be seeded in the MRS tissues. Using microRNA-targeted ZIKV clones engineered to abolish viral infectivity to different parts of the MRS or a library of ZIKV genomes with unique molecular identifiers, we pinpoint epithelial cells of the epididymis (rather than cells of the testis, vas deferens, prostate, or seminal vesicles) as a most likely source of the sexually transmitted ZIKV genomes during the early (most productive) phase of ZIKV shedding into the semen. Incorporation of this mechanistic knowledge into the development of a live-attenuated ZIKV vaccine restricts its ST potential.


Assuntos
Epididimo/virologia , Células Epiteliais/virologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Infecção por Zika virus/transmissão , Animais , Linhagem Celular , Chlorocebus aethiops , Epitélio/virologia , Feminino , Genitália Masculina/anatomia & histologia , Genitália Masculina/virologia , Masculino , Camundongos , Células Vero , Zika virus
3.
Elife ; 102021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599611

RESUMO

Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.


Assuntos
Imunidade Adaptativa/genética , Sistema Nervoso Central/imunologia , Pleiotropia Genética/imunologia , Imunidade Inata/genética , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Macaca mulatta , Masculino , Febre do Nilo Ocidental/virologia
4.
mBio ; 10(2)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015334

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, attempts to develop of a live attenuated virus (LAV) vaccine against TBEV with acceptable safety and immunogenicity characteristics have not been successful. To overcome this impasse, we generated a chimeric TBEV that was highly immunogenic in nonhuman primates (NHPs). The chimeric virus contains the prM/E genes of TBEV, which are expressed in the genetic background of an antigenically closely related, but less pathogenic member of the TBEV complex-Langat virus (LGTV), strain T-1674. The neurovirulence of this chimeric virus was subsequently controlled by robust targeting of the viral genome with multiple copies of central nervous system-enriched microRNAs (miRNAs). This miRNA-targeted T/1674-mirV2 virus was highly stable in Vero cells and was not pathogenic in various mouse models of infection or in NHPs. Importantly, in NHPs, a single dose of the T/1674-mirV2 virus induced TBEV-specific neutralizing antibody (NA) levels comparable to those seen with a three-dose regimen of an inactivated TBEV vaccine, currently available in Europe. Moreover, our vaccine candidate provided complete protection against a stringent wild-type TBEV challenge in mice and against challenge with a parental (not miRNA-targeted) chimeric TBEV/LGTV in NHPs. Thus, this highly attenuated and immunogenic T/1674-mirV2 virus is a promising LAV vaccine candidate against TBEV and warrants further preclinical evaluation of its neurovirulence in NHPs prior to entering clinical trials in humans.IMPORTANCE Tick-borne encephalitis virus (TBEV) is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, efforts to develop of TBEV live attenuated virus (LAV) vaccines with acceptable safety and immunogenicity characteristics have not been successful. Here we report the development and evaluation of a highly attenuated and immunogenic microRNA-targeted TBEV LAV.


Assuntos
Anticorpos Antivirais/sangue , Portadores de Fármacos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/prevenção & controle , Vetores Genéticos , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Chlorocebus aethiops , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/genética , Replicação Viral
5.
Nat Commun ; 9(1): 5350, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559387

RESUMO

Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.


Assuntos
Epididimo/virologia , Túbulos Seminíferos/virologia , Infecção por Zika virus/transmissão , Zika virus/genética , Zika virus/patogenicidade , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Genoma Viral/genética , Macaca mulatta , Masculino , Camundongos , MicroRNAs/genética , Células Vero , Zika virus/imunologia , Infecção por Zika virus/patologia , Infecção por Zika virus/veterinária
6.
Annu Rev Virol ; 5(1): 255-272, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30265628

RESUMO

Flaviviruses are major emerging human pathogens on a global scale. Some flaviviruses can infect the central nervous system of the host and therefore are regarded as neurotropic. The most clinically relevant classical neurotropic flaviviruses include Japanese encephalitis virus, West Nile virus, and tick-borne encephalitis virus. In this review, we focus on these flaviviruses and revisit the concepts of flaviviral neurotropism, neuropathogenicity, neuroinvasion, and resultant neuropathogenesis. We attempt to synthesize the current knowledge about interactions between the central nervous system and flaviviruses from the neuroanatomical and neuropathological perspectives and address some misconceptions and controversies. We hope that revisiting these neuropathological concepts will improve the understanding of flaviviral neuroinfections. This, in turn, may provide further guiding foundations for relevant studies of other emerging or geographically expanding flaviviruses with neuropathogenic potential, such as Zika virus and dengue virus, and pave the way for intelligent therapeutic strategies harnessing potentially beneficial, protective host responses to interfere with disease progression and outcome.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Viral/patologia , Encefalite Viral/virologia , Interações Hospedeiro-Patógeno , Vírus do Nilo Ocidental/patogenicidade , Animais , Encefalite Viral/fisiopatologia , Humanos , Tropismo Viral
7.
PLoS Negl Trop Dis ; 10(9): e0004980, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27617450

RESUMO

BACKGROUND: During recent West Nile virus (WNV) outbreaks in the US, half of the reported cases were classified as neuroinvasive disease. WNV neuroinvasion is proposed to follow two major routes: hematogenous and/or axonal transport along the peripheral nerves. How virus spreads once within the central nervous system (CNS) remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using immunohistochemistry, we examined the expression of viral antigens in the CNS of rhesus monkeys that were intrathalamically inoculated with a wild-type WNV. The localization of WNV within the CNS was mapped to specific neuronal groups and anatomical structures. The neurological functions related to structures containing WNV-labeled neurons were reviewed and summarized. Intraneuronal localization of WNV was investigated by electron microscopy. The known anatomical connectivity of WNV-labeled neurons was used to reconstruct the directionality of WNV spread within the CNS using a connectogram design. Anatomical mapping revealed that all structures identified as containing WNV-labeled neurons belonged to the pathways of motor control. Ultrastructurally, virions were found predominantly within vesicular structures (including autophagosomes) in close vicinity to the axodendritic synapses, either at pre- or post-synaptic positions (axonal terminals and dendritic spines, respectively), strongly indicating transsynaptic spread of the virus between connected neurons. Neuronal connectivity-based reconstruction of the directionality of transsynaptic virus spread suggests that, within the CNS, WNV can utilize both anterograde and retrograde axonal transport to infect connected neurons. CONCLUSIONS/SIGNIFICANCE: This study offers a new insight into the neuropathogenesis of WNV infection in a primate model that closely mimics WNV encephalomyelitis in humans. We show that within the primate CNS, WNV primarily infects the anatomical structures and pathways responsible for the control of movement. Our findings also suggest that WNV most likely propagates within the CNS transsynaptically, by both, anterograde and retrograde axonal transport.


Assuntos
Córtex Motor/patologia , Neurônios/ultraestrutura , Neurônios/virologia , Medula Espinal/patologia , Febre do Nilo Ocidental/virologia , Animais , Antígenos Virais/imunologia , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Macaca mulatta , Microscopia Eletrônica , Córtex Motor/virologia , Medula Espinal/virologia , Vírus do Nilo Ocidental/patogenicidade
8.
Antiviral Res ; 127: 57-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26794396

RESUMO

In recent years, microRNA-targeting has become an effective strategy for selective control of tissue-tropism and pathogenicity of both DNA and RNA viruses. Previously, we reported the successful application of this strategy to control the neurovirulent phenotype of a model chimeric tick-borne encephalitis/dengue type 4 virus (TBEV/DEN4), containing the structural protein genes of a highly virulent TBEV in the genetic backbone of non-neuroinvasive DEN4 virus. In the present study, we investigated the suitability of this approach for the attenuation of the more neurovirulent chimeric virus (TBEV/LGTV), which is based on the genetic backbone of the naturally attenuated member of the TBEV serocomplex, a Langat virus (LGTV). Unlike the TBEV/DEN4, the TBEV/LGTV virus retained the ability of its parental viruses to spread from the peripheral site of inoculation to the CNS. We evaluated ten potential sites in the 3'NCR of the TBEV/LGTV genome for placement of microRNA (miRNA) targets and found that the TBEV/LGTV genome is more restrictive for such genetic manipulations compared to TBEV/DEN4. In addition, unlike TBEV/DEN4 virus, the introduction of multiple miRNA targets into either the 3'NCR or ORF of the TBEV/LGTV genome had only a modest effect on virus attenuation in the developing CNS of highly permissive newborn mice. However, simultaneous miRNA-targeting in the ORF and 3'NCR had synergistic effect on control and silencing of virus replication in the brain and completely abolished the virus neurotropism. Furthermore, neuroinvasiveness of miRNA-targeted TBEV/LGTV viruses in very sensitive immunodeficient SCID mice was significantly limited. Immunocompetent animals immunized with such viruses were completely protected against challenge with the neurovirulent LGTV parent. These findings support the rationale of the miRNA-targeting approach to develop live attenuated virus vaccines against various neurotropic viruses.


Assuntos
Encefalopatias/virologia , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Flavivirus/patogenicidade , MicroRNAs/genética , Neurônios/virologia , Doenças Transmitidas por Carrapatos/virologia , Animais , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Encefalopatias/prevenção & controle , Linhagem Celular , Embrião de Galinha , Chlorocebus aethiops , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Flavivirus/genética , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/prevenção & controle , Genoma Viral , Camundongos , Camundongos SCID , MicroRNAs/metabolismo , Microglia/patologia , Microglia/virologia , Dados de Sequência Molecular , Neurônios/patologia , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/prevenção & controle , Células Vero , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral/genética
9.
Virology ; 456-457: 247-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24889244

RESUMO

In recent years, microRNA-targeting has become an effective strategy for selective control of tissue-tropism and pathogenesis of both DNA and RNA viruses. Here, using a neurotropic flavivirus as a model, we demonstrate that simultaneous miRNA targeting of the viral genome in the open reading frame and 3'-noncoding regions for brain-expressed miRNAs had an additive effect and produced a more potent attenuation of the virus compared to separate targeting of those regions. Multiple miRNA co-targeting of these two distantly located regions completely abolished the virus neurotropism as no viral replication was detected in the developing brain of neonatal mice. Furthermore, no viral antigens were detected in neurons, and neuronal integrity in the brain of mice was well preserved. This miRNA co-targeting approach can be adapted for other viruses in order to minimize their replication in a cell- or tissue-type specific manner, but most importantly, to prevent virus escape from miRNA-mediated silencing.


Assuntos
Encéfalo/virologia , Flavivirus/fisiologia , Genoma Viral , MicroRNAs/metabolismo , Mutagênese Insercional , Tropismo Viral , Replicação Viral , Animais , Animais Recém-Nascidos , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Flavivirus/genética , Flavivirus/imunologia , Infecções por Flavivirus/patologia , Infecções por Flavivirus/virologia , Camundongos , MicroRNAs/genética , Neurônios/imunologia , Neurônios/virologia
10.
Vaccine ; 32(26): 3187-97, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24736001

RESUMO

The upsurge of West Nile virus (WNV) human infections in 2012 suggests that the US can expect periodic WNV outbreaks in the future. Availability of safe and effective vaccines against WNV in endemic areas, particularly for aging populations that are at high risk of West Nile neuroinvasive disease (WNND), could be beneficial. WN/DEN4Δ30 is a live, attenuated chimeric vaccine against WNV produced by replacement of the genes encoding the pre-membrane and envelope protein genes of the vaccine virus against dengue virus type 4 (DEN4Δ30) with corresponding sequences derived from a wild type WNV. Following intrathalamic inoculation of nonhuman primates (NHPs), a comprehensive neuropathogenesis study was performed and neurovirulence of WN/DEN4Δ30 vaccine candidate was compared to that of two parental viruses (i.e., WNV and DEN4Δ30), as well as to that of an attenuated flavivirus surrogate reference (i.e., yellow fever YF 17D). Clinical and virological data, as well as results of a semi-quantitative histopathological analysis, demonstrated that WN/DEN4Δ30 vaccine is highly attenuated for the central nervous system (CNS) of NHPs in comparison to a wild type WNV. Importantly, based on the virus replicative ability in the CNS of NHPs and the degree of induced histopathological changes, the level of neuroattenuation of WN/DEN4Δ30 vaccine was similar to that of YF 17D, and therefore within an acceptable range. In addition, we show that the DEN4Δ30 vaccine tested in this study also has a low neurovirulence profile. In summary, our results demonstrate a high level of neuroattenuation of two vaccine candidates, WN/DEN4Δ30 and DEN4Δ30. We also show here a remarkable sensitivity of our WNV-NY99 NHP model, as well as striking resemblance of the observed neuropathology to that seen in human WNND. These results support the use of this NHP model for translational studies of WNV neuropathogenesis and/or testing the effectiveness of vaccines and therapeutic approaches.


Assuntos
Sistema Nervoso Central/virologia , Vacinas Virais/imunologia , Febre do Nilo Ocidental/patologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Sistema Nervoso Central/patologia , Macaca mulatta , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Viremia/patologia , Replicação Viral , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia
11.
Immunity ; 40(2): 187-98, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24485804

RESUMO

Recent epidemiological studies have identified interferon regulatory factor 8 (IRF8) as a susceptibility factor for multiple sclerosis (MS). However, how IRF8 influences the neuroinflammatory disease has remained unknown. By studying the role of IRF8 in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we found that Irf8(-/-) mice are resistant to EAE. Furthermore, expression of IRF8 in antigen-presenting cells (APCs, such as macrophages, dendritic cells, and microglia), but not in T cells, facilitated disease onset and progression through multiple pathways. IRF8 enhanced αvß8 integrin expression in APCs and activated TGF-ß signaling leading to T helper 17 (Th17) cell differentiation. IRF8 induced a cytokine milieu that favored growth and maintenance of Th1 and Th17 cells, by stimulating interleukin-12 (IL-12) and IL-23 production, but inhibiting IL-27 during EAE. Finally, IRF8 activated microglia and exacerbated neuroinflammation. Together, this work provides mechanistic bases by which IRF8 contributes to the pathogenesis of MS.


Assuntos
Inflamação/fisiopatologia , Integrinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Citometria de Fluxo , Fatores Reguladores de Interferon/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética
12.
Mol Cell Biol ; 34(1): 123-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190965

RESUMO

La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1(Cre) La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Lobo Frontal/imunologia , Neurônios/imunologia , Ribonucleoproteínas/imunologia , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Linfócitos B/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/imunologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , RNA/genética , RNA/imunologia , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/imunologia , Precursores de RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/imunologia , RNA de Transferência/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/metabolismo , Fatores de Tempo , Antígeno SS-B
13.
J Virol ; 86(10): 5647-59, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22419812

RESUMO

Neurotropic flaviviruses can efficiently replicate in the developing and mature central nervous systems (CNS) of mice causing lethal encephalitis. Insertion of a single copy of a target for brain-expressed microRNAs (miRNAs) in the 3' noncoding region (3'NCR) of the flavivirus genome (chimeric tick-borne encephalitis virus/dengue virus) abolished virus neurovirulence in the mature mouse CNS. However, in the developing CNS of highly permissive suckling mice, the miRNA-targeted viruses can revert to a neurovirulent phenotype by accumulating deletions or mutations within the miRNA target sequence. Virus escape from miRNA-mediated suppression in the developing CNS was markedly diminished by increasing the number of miRNA target sites and by extending the distance between these sites in the virus genome. Insertion of multiple miRNA targets into the 3'NCR altered virus neuroinvasiveness, decreased neurovirulence and neuroinflammatory responses, and prevented neurodegeneration without loss of immunogenicity. Although the onset of encephalitis was delayed, a small number of suckling mice still succumbed to lethal intracerebral infection with the miRNA-targeted viruses. Sequence analysis of brain isolates from moribund mice revealed that the viruses escaped from miRNA-mediated suppression exclusively through the deletion of miRNA targets and viral genome sequence located between the two miRNA targets separated by the greatest distance. These findings offer a general strategy to control the reversion of virus to a virulent phenotype: a simultaneous miRNA targeting of the viral genome at many different functionally important regions could prevent virus escape from miRNA-based attenuation, since a deletion of the targeted genomic sequences located between the inserted miRNA binding sites would be lethal for the virus.


Assuntos
Doenças do Sistema Nervoso Central/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Infecções por Flavivirus/virologia , MicroRNAs/genética , Liberação de Vírus , Animais , Sequência de Bases , Vírus da Dengue/química , Vírus da Dengue/fisiologia , Vírus da Encefalite Transmitidos por Carrapatos/química , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Marcação de Genes , Humanos , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fenótipo , Virulência , Replicação Viral
14.
Proc Natl Acad Sci U S A ; 108(39): 16416-21, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930918

RESUMO

The 1918 to 1919 "Spanish" influenza pandemic virus killed up to 50 million people. We report here clinical, pathological, bacteriological, and virological findings in 68 fatal American influenza/pneumonia military patients dying between May and October of 1918, a period that includes ~4 mo before the 1918 pandemic was recognized, and 2 mo (September-October 1918) during which it appeared and peaked. The lung tissues of 37 of these cases were positive for influenza viral antigens or viral RNA, including four from the prepandemic period (May-August). The prepandemic and pandemic peak cases were indistinguishable clinically and pathologically. All 68 cases had histological evidence of bacterial pneumonia, and 94% showed abundant bacteria on Gram stain. Sequence analysis of the viral hemagglutinin receptor-binding domain performed on RNA from 13 cases suggested a trend from a more "avian-like" viral receptor specificity with G222 in prepandemic cases to a more "human-like" specificity associated with D222 in pandemic peak cases. Viral antigen distribution in the respiratory tree, however, was not apparently different between prepandemic and pandemic peak cases, or between infections with viruses bearing different receptor-binding polymorphisms. The 1918 pandemic virus was circulating for at least 4 mo in the United States before it was recognized epidemiologically in September 1918. The causes of the unusually high mortality in the 1918 pandemic were not explained by the pathological and virological parameters examined. These findings have important implications for understanding the origins and evolution of pandemic influenza viruses.


Assuntos
Autopsia , Influenza Humana/mortalidade , Antígenos Virais/análise , História do Século XX , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Humana/epidemiologia , Influenza Humana/história , Dados de Sequência Molecular , RNA Viral/análise
15.
J Virol ; 85(4): 1464-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123372

RESUMO

Flaviviruses such as West Nile, Japanese encephalitis, and tick-borne encephalitis (TBEV) viruses are important neurotropic human pathogens, causing a devastating and often fatal neuroinfection. Here, we demonstrate that incorporation into the viral genome of a target sequence for cellular microRNAs expressed in the central nervous system (CNS) enables alteration of the neurovirulence of the virus and control of the neuropathogenesis of flavivirus infection. As a model virus for this type of modification, we used a neurovirulent chimeric tick-borne encephalitis/dengue virus (TBEV/DEN4) that contained the structural protein genes of a highly pathogenic TBEV. The inclusion of just a single target copy for a brain tissue-expressed mir-9, mir-124a, mir-128a, mir-218, or let-7c microRNA into the TBEV/DEN4 genome was sufficient to prevent the development of otherwise lethal encephalitis in mice infected intracerebrally with a large dose of virus. Viruses bearing a complementary target for mir-9 or mir-124a were highly restricted in replication in primary neuronal cells, had limited access into the CNS of immunodeficient mice, and retained the ability to induce a strong humoral immune response in monkeys. This work suggests that microRNA targeting to control flavivirus tissue tropism and pathogenesis might represent a rational approach for virus attenuation and vaccine development.


Assuntos
Vírus da Dengue/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , MicroRNAs/genética , Mutagênese Insercional , Proteínas Recombinantes de Fusão/genética , Animais , Anticorpos Antivirais/sangue , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/virologia , Células Cultivadas , Chlorocebus aethiops , Culicidae/virologia , Dengue/genética , Dengue/imunologia , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/virologia , Genoma Viral , Humanos , Macaca mulatta , Camundongos , Neurônios/virologia , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Vacinas Atenuadas/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Replicação Viral
16.
Vaccine ; 28(52): 8315-26, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-20688036

RESUMO

Historically, the safety of live attenuated vaccine candidates against neurotropic viruses was assessed by semi-quantitative analysis of virus-induced histopathology in the central nervous system of monkeys. We have developed a high-throughput automated image analysis (AIA) for the quantitative assessment of virus-induced neuroinflammation and neurodegeneration. Evaluation of the results generated by AIA showed that quantitative estimates of lymphocytic infiltration, microglial activation, and neurodegeneration strongly and significantly correlated with results of traditional histopathological scoring. In addition, we show that AIA is a targeted, objective, accurate, and time-efficient approach that provides reliable differentiation of virus neurovirulence. As such, it may become a useful tool in establishing consistent analytical standards across research and development laboratories and regulatory agencies, and may improve the safety evaluation of live virus vaccines. The implementation of this high-throughput AIA will markedly advance many fields of research including virology, neuroinflammation, neuroscience, and vaccinology.


Assuntos
Automação/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Doenças do Sistema Nervoso/patologia , Doenças dos Primatas/patologia , Viroses/patologia , Animais , Vírus da Dengue/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Histocitoquímica , Macaca mulatta , Microscopia , Doenças do Sistema Nervoso/prevenção & controle , Doenças do Sistema Nervoso/virologia , Doenças dos Primatas/prevenção & controle , Doenças dos Primatas/virologia , Viroses/prevenção & controle
17.
Virology ; 405(1): 243-52, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20594569

RESUMO

Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E(315)) and NS5 (NS5(654,655)) proteins, and into the 3' non-coding region (Delta30) of TBEV/DEN4. The variant that contained all three mutations (vDelta30/E(315)/NS5(654,655)) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that vDelta30/E(315)/NS5(654,655) should be further evaluated as a TBEV vaccine.


Assuntos
Vírus da Dengue/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus Reordenados/patogenicidade , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Regiões 3' não Traduzidas , Animais , Animais Lactentes , Encéfalo , Chlorocebus aethiops , Vírus da Dengue/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral , Camundongos , Mutação , Vírus Reordenados/genética , Células Vero , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Virulência , Replicação Viral
18.
J Histochem Cytochem ; 57(10): 973-89, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19581627

RESUMO

Flaviviruses such as tick-borne encephalitis virus, Japanese encephalitis virus, West Nile virus, and St. Louis encephalitis virus are important neurotropic human pathogens, typically causing a devastating and often fatal neuroinfection. Flaviviruses induce neuroinflammation with typical features of viral encephalitides, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. Development of safe and effective live-virus vaccines against neurotropic flavivirus infections demands a detailed knowledge of their neuropathogenesis in a primate host that is evolutionarily close to humans. Here, we used computerized morphometric analysis to quantitatively assess the cellular inflammatory responses in the central nervous system (CNS) of rhesus monkeys infected with three antigenically divergent attenuated flaviviruses. The kinetics, spatial pattern, and magnitude of microglial activation, trafficking of T and B cells, and changes in T cell subsets within the CNS define unique phenotypic signatures for each of the three viruses. Our results provide a benchmark for investigation of cellular inflammatory responses induced by attenuated flaviviruses in the CNS of primate hosts and provide insight into the neuropathogenesis of flavivirus encephalitis that might guide the development of safe and effective live-virus vaccines.


Assuntos
Encéfalo/imunologia , Infecções por Flaviviridae/imunologia , Flaviviridae/fisiologia , Interações Hospedeiro-Patógeno , Medula Espinal/imunologia , Animais , Apoptose , Linfócitos B/imunologia , Linfócitos B/fisiologia , Encéfalo/patologia , Encéfalo/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Infecções por Flaviviridae/patologia , Infecções por Flaviviridae/virologia , Inflamação/imunologia , Inflamação/patologia , Macaca mulatta , Macrófagos/imunologia , Microglia/imunologia , Medula Espinal/patologia , Medula Espinal/virologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/fisiologia
19.
J Am Assoc Lab Anim Sci ; 47(4): 64-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18702454

RESUMO

Large ascarid larvae within granulomas were noted histologically in the mesenteric and pancreatic lymph nodes of 13 of 21 rhesus macaques (Macaca mulatta) euthanized as part of an experimental viral pathogenesis study. In addition, 7 of the 13 monkeys had cerebral granulomas, which in 4 animals contained nematode larvae similar to those within the lymph nodes. Despite the lesions, the animals did not show clinical signs associated with the parasitic infections. Characteristics of the larvae included, on cross-section, a midbody diameter of approximately 60 to 80 mum, a centrally located and slightly compressed intestine flanked on either side by large triangular excretory columns, and prominent single lateral cuticular alae. The morphology of the larvae was compatible with Baylisascaris spp. Baylisascariasis is a well-described infection of animals and humans that is caused by migrating larvae of the raccoon roundworm, Baylisascaris procyonis. A similar species, B. columnaris, is found in skunks and can cause cerebrospinal nematodiasis, but most reported cases of baylisascariasis have been due to B. procyonis. Our macaques were born free-ranging on an island in the southeastern United States where raccoons, but not skunks, were found to be common inhabitants, indicating that B. procyonis was the most likely parasite involved. These cases are similar to the low-level or covert cases of Baylisascaris infection described to occur in humans and provide further evidence of the existence of this parasite in the southeastern United States.


Assuntos
Larva Migrans/veterinária , Doenças dos Macacos/parasitologia , Doenças Parasitárias em Animais/parasitologia , Animais , Ascaridoidea/isolamento & purificação , Ascaridoidea/fisiologia , Encéfalo/parasitologia , Encéfalo/patologia , Larva Migrans/patologia , Linfonodos/parasitologia , Linfonodos/patologia , Macaca mulatta , Masculino , Mesentério/parasitologia , Doenças dos Macacos/patologia , Doenças Parasitárias em Animais/patologia
20.
J Virol ; 82(11): 5255-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18353947

RESUMO

Based on previous preclinical evaluation in mice and monkeys, the chimeric TBEV/DEN4Delta30 virus, carrying the prM and E protein genes from a highly virulent Far Eastern strain of tick-borne encephalitis virus (TBEV) on the backbone of a nonneuroinvasive dengue type 4 virus (DEN4), has been identified as a promising live attenuated virus vaccine candidate against disease caused by TBEV. However, prior to use of this vaccine candidate in humans, its neurovirulence in nonhuman primates needed to be evaluated. In the present study, we compared the neuropathogeneses of the chimeric TBEV/DEN4Delta30 virus; Langat virus (LGTV), a former live TBEV vaccine; and yellow fever 17D virus vaccine (YF 17D) in rhesus monkeys inoculated intracerebrally. TBEV/DEN4Delta30 and YF 17D demonstrated remarkably similar spatiotemporal profiles of virus replication and virus-associated histopathology in the central nervous system (CNS) that were high in cerebral hemispheres but progressively decreased toward the spinal cord. In contrast, the neurovirulence of LGTV exhibited the reverse profile, progressing from the site of inoculation toward the cerebellum and spinal cord. Analysis of the spatiotemporal distribution of viral antigens in the CNS of monkeys revealed a prominent neurotropism associated with all three attenuated viruses. Nevertheless, TBEV/DEN4Delta30 virus exhibited higher neurovirulence in monkeys than either LGTV or YF 17D, suggesting insufficient attenuation. These results provide insight into the neuropathogenesis associated with attenuated flaviviruses that may guide the design of safe vaccines.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus , Macaca mulatta/imunologia , Macaca mulatta/virologia , Neurônios/virologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Antígenos/imunologia , Chlorocebus aethiops , Flavivirus/efeitos dos fármacos , Flavivirus/imunologia , Flavivirus/patogenicidade , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/patologia , Imuno-Histoquímica , Células Vero , Proteínas Virais/imunologia , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA