Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Genome Biol ; 25(1): 139, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802856

RESUMO

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Assuntos
Genômica , Plantas Daninhas , Plantas Daninhas/genética , Genômica/métodos , Controle de Plantas Daninhas/métodos , Genoma de Planta , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Melhoramento Vegetal/métodos
2.
Commun Biol ; 6(1): 902, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667032

RESUMO

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.


Assuntos
Pennisetum , Pennisetum/genética , Embaralhamento de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura
3.
BMC Genomics ; 22(1): 23, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407087

RESUMO

BACKGROUND: Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. RESULTS: Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. CONCLUSIONS: Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Montagem e Desmontagem da Cromatina , Expressão Gênica , Genoma de Planta , Zea mays/genética
4.
J Org Chem ; 85(13): 8732-8739, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32482067

RESUMO

A photoredox protocol that uses a heteroleptic Cu (I) complex, [Cu(dq)(BINAP)]BF4, has been developed for the photodeprotection of benzenesulfonyl-protected N-heterocycles. A range of substrates was examined, including indazoles, indoles, pyrazoles, and benzimidazole, featuring both electron-rich and electron-deficient substituents, giving good yields of the N-heterocycle products with broad functional group tolerance. This transformation was also found to be amenable to flow reaction conditions.

5.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457089

RESUMO

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes , Taxa de Mutação , Plantas Geneticamente Modificadas/genética
6.
Sci Rep ; 9(1): 6729, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040331

RESUMO

CRISPR-Cas9 enabled genome engineering has great potential for improving agriculture productivity, but the possibility of unintended off-target edits has evoked some concerns. Here we employ a three-step strategy to investigate Cas9 nuclease specificity in a complex plant genome. Our approach pairs computational prediction with genome-wide biochemical off-target detection followed by validation in maize plants. Our results reveal high frequency (up to 90%) on-target editing with no evidence of off-target cleavage activity when guide RNAs were bioinformatically predicted to be specific. Predictable off-target edits were observed but only with a promiscuous guide RNA intentionally designed to validate our approach. Off-target editing can be minimized by designing guide RNAs that are different from other genomic locations by at least three mismatches in combination with at least one mismatch occurring in the PAM proximal region. With well-designed guides, genetic variation from Cas9 off-target cleavage in plants is negligible, and much less than inherent variation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Zea mays/genética , Proteína 9 Associada à CRISPR/genética , Biologia Computacional/métodos , Variação Genética , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Reprodutibilidade dos Testes
7.
Nat Commun ; 9(1): 4844, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451840

RESUMO

Long-read sequencing technologies have greatly facilitated assemblies of large eukaryotic genomes. In this paper, Oxford Nanopore sequences generated on a MinION sequencer are combined with Bionano Genomics Direct Label and Stain (DLS) optical maps to generate a chromosome-scale de novo assembly of the repeat-rich Sorghum bicolor Tx430 genome. The final assembly consists of 29 scaffolds, encompassing in most cases entire chromosome arms. It has a scaffold N50 of 33.28 Mbps and covers 90% of the expected genome length. A sequence accuracy of 99.85% is obtained after aligning the assembly against Illumina Tx430 data and 99.6% of the 34,211 public gene models align to the assembly. Comparisons of Tx430 and BTx623 DLS maps against the public BTx623 v3.0.1 genome assembly suggest substantial discrepancies whose origin remains to be determined. In summary, this study demonstrates that informative assemblies of complex plant genomes can be generated by combining nanopore sequencing with DLS optical maps.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Mapeamento Físico do Cromossomo/métodos , Sorghum/genética , Tamanho do Genoma , Repetições de Microssatélites , Nanoporos , Coloração e Rotulagem/métodos
8.
J Org Chem ; 83(18): 10933-10940, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30092130

RESUMO

C-H functionalization of electron-deficient heteroarenes using commercial unactivated alkyl halides through reductive quenching photoredox catalysis was developed. Mainstream approaches rely on the use of an excess of strong acids that result in regioselectivities dictated by the innate effect of the protonated heteroarene, leaving the functionalization of other carbons unexplored. We report a mild method under basic conditions that allows access to previously underexplored regioselectivities by relying on a combination of conjugate and halogen  ortho-directing effects. Overall, this methodology gives quick access to a variety of alkylated heteroarenes that will be of interest to medicinal chemistry programs.

9.
J Org Chem ; 83(3): 1551-1557, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29281285

RESUMO

The photoredox cross-coupling of aryl halides and potassium alkyl trifluoroborates is a very effective means to form Csp3-Csp2 bonds. However, this transformation is inefficient for the coupling of unactivated primary trifluoroborates. We have developed a generally useful, continuous flow Csp3-Csp2 coupling procedure for the synthesis of diverse product sets that is compatible with both trifluoroborates and silicate reagents. This universal protocol provides diversity sets from both primary and secondary coupling partners. This easily scalable procedure widens the substrate scope of the coupling reaction and is efficient for producing a greater range of analogues bearing a high sp3 fraction.

10.
Sci Rep ; 6: 28625, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350167

RESUMO

The MinION is a portable single-molecule DNA sequencing instrument that was released by Oxford Nanopore Technologies in 2014, producing long sequencing reads by measuring changes in ionic flow when single-stranded DNA molecules translocate through the pores. While MinION long reads have an error rate substantially higher than the ones produced by short-read sequencing technologies, they can generate de novo assemblies of microbial genomes, after an initial correction step that includes alignment of Illumina sequencing data or detection of overlaps between Oxford Nanopore reads to improve accuracy. In this study, MinION reads were generated from the multi-chromosome genome of Agrobacterium tumefaciens strain LBA4404. Errors in the consensus two-directional (sense and antisense) "2D" sequences were first characterized by way of comparison with an internal reference assembly. Both Illumina-based correction and self-correction were performed and the resulting corrected reads assembled into high-quality hybrid and non-hybrid assemblies. Corrected read datasets and assemblies were subsequently compared. The results shown here indicate that both hybrid and non-hybrid methods can be used to assemble Oxford Nanopore reads into informative multi-chromosome assemblies, each with slightly different outcomes in terms of contiguity and accuracy.


Assuntos
Agrobacterium tumefaciens/genética , Bases de Dados Genéticas
11.
Front Plant Sci ; 7: 225, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941773

RESUMO

The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4'-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4'-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot.

12.
BMC Syst Biol ; 10(Suppl 5): 126, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28105955

RESUMO

BACKGROUND: Soybean (Glycine max) production is significantly hampered by frequent droughts in many regions of the world including the United States. Identifying microRNA (miRNA)-controlled posttranscriptional gene regulation under drought will enhance our understanding of molecular basis of drought tolerance in this important cash crop. Indeed, miRNA profiles in soybean exposed to drought were studied but not from the primary root tips, which is not only a main zone of water uptake but also critical for water stress sensing and signaling. METHODS: Here we report miRNA profiles specifically from well-watered and water-stressed primary root tips (0 to 8 mm from the root apex) of soybean. Small RNA sequencing confirmed the expression of vastly diverse miRNA (303 individual miRNAs) population, and, importantly several conserved miRNAs were abundantly expressed in primary root tips. RESULTS: Notably, 12 highly conserved miRNA families were differentially regulated in response to water-deficit; six were upregulated while six others were downregulated at least by one fold (log2) change. Differentially regulated soybean miRNAs are targeting genes include auxin response factors, Cu/Zn Superoxide dismutases, laccases and plantacyanin and several others. CONCLUSIONS: These results highlighted the importance of miRNAs in primary root tips both under control and water-deficit conditions; under control conditions, miRNAs could be important for cell division, cell elongation and maintenance of the root apical meristem activity including quiescent centre whereas under water stress differentially regulated miRNAs could decrease auxin signaling and oxidative stress as well as other metabolic processes that save energy and water.


Assuntos
Glycine max/efeitos dos fármacos , Glycine max/genética , Meristema/efeitos dos fármacos , Meristema/genética , MicroRNAs/genética , Água/farmacologia , Sequência de Bases , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Glycine max/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
13.
J Strength Cond Res ; 29(11): 3060-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25932980

RESUMO

The physiological demands of jockeys during competition remain largely unknown, thereby creating challenges when attempting to prescribe sport-specific nutrition and training guidelines. The purpose of this study was to evaluate the physiological demands and energy requirements of jockeys during flat racing. Oxygen uptake (V[Combining Dot Above]O2) and heart rate (HR) were assessed in 18 male trainee jockeys during a race simulation trial on a mechanical horse racing simulator for the typical time duration to cover a common flat race distance of 1,400 m. In addition, 8 male apprentice jockeys participated in a competitive race, over distances ranging from 1,200 to 1,600 m, during which HR and respiratory rate (RR) were assessed. All participants performed a maximal incremental cycle ergometer test. During the simulated race, peak V[Combining Dot Above]O2 was 42.74 ± 5.6 ml·kg·min (75 ± 11% of V[Combining Dot Above]O2peak) and below the mean ventilatory threshold (81 ± 5% of V[Combining Dot Above]O2peak) reported in the maximal incremental cycle test. Peak HR was 161 ± 16 b·min (86 ± 7% of HRpeak). Energy expenditure was estimated as 92.5 ± 18.8 kJ with an associated value of 9.4 metabolic equivalents. During the competitive race trial, peak HR reached 189 ± 5 b·min (103 ± 4% of HRpeak) and peak RR was 50 ± 7 breaths per minute. Results suggest that horse racing is a physically demanding sport, requiring jockeys to perform close to their physiological limit to be successful. These findings may provide a useful insight when developing sport-specific nutrition and training strategies to optimally equip and prepare jockeys physically for the physiological demands of horse racing.


Assuntos
Metabolismo Energético/fisiologia , Esportes/fisiologia , Adolescente , Animais , Ergometria , Frequência Cardíaca/fisiologia , Cavalos , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
14.
Plant Genome ; 8(1): eplantgenome2014.08.0037, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33228291

RESUMO

Molecular characterization of events is an integral part of the advancement process during genetically modified (GM) crop product development. Assessment of these events is traditionally accomplished by polymerase chain reaction (PCR) and Southern blot analyses. Southern blot analysis can be time-consuming and comparatively expensive and does not provide sequence-level detail. We have developed a sequence-based application, Southern-by-Sequencing (SbS), utilizing sequence capture coupled with next-generation sequencing (NGS) technology to replace Southern blot analysis for event selection in a high-throughput molecular characterization environment. SbS is accomplished by hybridizing indexed and pooled whole-genome DNA libraries from GM plants to biotinylated probes designed to target the sequence of transformation plasmids used to generate events within the pool. This sequence capture process enriches the sequence data obtained for targeted regions of interest (transformation plasmid DNA). Taking advantage of the DNA adjacent to the targeted bases (referred to as next-to-target sequence) that accompanies the targeted transformation plasmid sequence, the data analysis detects plasmid-to-genome and plasmid-to-plasmid junctions introduced during insertion into the plant genome. Analysis of these junction sequences provides sequence-level information as to the following: the number of insertion loci including detection of unlinked, independently segregating, small DNA fragments; copy number; rearrangements, truncations, or deletions of the intended insertion DNA; and the presence of transformation plasmid backbone sequences. This molecular evidence from SbS analysis is used to characterize and select GM plants meeting optimal molecular characterization criteria. SbS technology has proven to be a robust event screening tool for use in a high-throughput molecular characterization environment.

15.
PLoS One ; 9(7): e103223, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061748

RESUMO

Galanthamine is an Amaryllidaceae alkaloid used to treat the symptoms of Alzheimer's disease. This compound is primarily isolated from daffodil (Narcissus spp.), snowdrop (Galanthus spp.), and summer snowflake (Leucojum aestivum). Despite its importance as a medicine, no genes involved in the biosynthetic pathway of galanthamine have been identified. This absence of genetic information on biosynthetic pathways is a limiting factor in the development of synthetic biology platforms for many important botanical medicines. The paucity of information is largely due to the limitations of traditional methods for finding biochemical pathway enzymes and genes in non-model organisms. A new bioinformatic approach using several recent technological improvements was applied to search for genes in the proposed galanthamine biosynthetic pathway, first targeting methyltransferases due to strong signature amino acid sequences in the proteins. Using Illumina sequencing, a de novo transcriptome assembly was constructed for daffodil. BLAST was used to identify sequences that contain signatures for plant O-methyltransferases in this transcriptome. The program HAYSTACK was then used to identify methyltransferases that fit a model for galanthamine biosynthesis in leaf, bulb and inflorescence tissues. One candidate gene for the methylation of norbelladine to 4'-O-methylnorbelladine in the proposed galanthamine biosynthetic pathway was identified. This methyltransferase cDNA was expressed in E. coli and the protein purified by affinity chromatography. The resulting protein was found to be a norbelladine 4'-O-methyltransferase (NpN4OMT) of the proposed galanthamine biosynthetic pathway.


Assuntos
Alcaloides/metabolismo , Galantamina/metabolismo , Narcissus/enzimologia , Proteína O-Metiltransferase/genética , Alcaloides/genética , Alcaloides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Escherichia coli , Galantamina/genética , Galantamina/uso terapêutico , Humanos , Narcissus/química , Narcissus/genética , Proteína O-Metiltransferase/isolamento & purificação , Proteína O-Metiltransferase/metabolismo
16.
PLoS Genet ; 10(5): e1004336, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784729

RESUMO

Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/fisiologia , Regiões 5' não Traduzidas , Sítios de Ligação , Proteínas Fúngicas/genética , Dosagem de Genes , Regiões Promotoras Genéticas
17.
Fungal Genet Biol ; 58-59: 1-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23867711

RESUMO

Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes.


Assuntos
Fungos/genética , Engenharia Genética , Vetores Genéticos/genética , Plasmídeos/genética , Fungos/metabolismo , Vetores Genéticos/metabolismo , Genoma Fúngico , Plasmídeos/metabolismo , Transformação Genética
18.
PLoS One ; 8(5): e65688, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741505

RESUMO

Genome-wide association study (GWAS) has revolutionized the search for the genetic basis of complex traits. To date, GWAS have generally relied on relatively sparse sampling of nucleotide diversity, which is likely to bias results by preferentially sampling high-frequency SNPs not in complete linkage disequilibrium (LD) with causative SNPs. To avoid these limitations we conducted GWAS with >6 million SNPs identified by sequencing the genomes of 226 accessions of the model legume Medicago truncatula. We used these data to identify candidate genes and the genetic architecture underlying phenotypic variation in plant height, trichome density, flowering time, and nodulation. The characteristics of candidate SNPs differed among traits, with candidates for flowering time and trichome density in distinct clusters of high linkage disequilibrium (LD) and the minor allele frequencies (MAF) of candidates underlying variation in flowering time and height significantly greater than MAF of candidates underlying variation in other traits. Candidate SNPs tagged several characterized genes including nodulation related genes SERK2, MtnodGRP3, MtMMPL1, NFP, CaML3, MtnodGRP3A and flowering time gene MtFD as well as uncharacterized genes that become candidates for further molecular characterization. By comparing sequence-based candidates to candidates identified by in silico 250K SNP arrays, we provide an empirical example of how reliance on even high-density reduced representation genomic makers can bias GWAS results. Depending on the trait, only 30-70% of the top 20 in silico array candidates were within 1 kb of sequence-based candidates. Moreover, the sequence-based candidates tagged by array candidates were heavily biased towards common variants; these comparisons underscore the need for caution when interpreting results from GWAS conducted with sparsely covered genomes.


Assuntos
Genoma de Planta , Genômica , Medicago truncatula/genética , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Nodulação/genética , Polimorfismo de Nucleotídeo Único
19.
Genome Biol ; 14(6): r53, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23731509

RESUMO

BACKGROUND: Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. RESULTS: We describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina 1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation. CONCLUSIONS: We report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Característica Quantitativa Herdável , Cacau/genética , Cacau/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas , Cor , Frutas/metabolismo , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA